

ReSIST: Resilience for Survivability in IST

A European Network of Excellence

Contract Number: 026764

Deliverable D11: Support for Resilience-Explicit Computing - first edition

 Report Preparation Date: September 2007
 Classification: Public
 Contract Start Date: 1st January 2006
 Contract Duration: 36 months
 Project Co-ordinator: LAAS-CNRS
 Partners: Budapest University of Technology and Economics
 City University, London
 Technische Universität Darmstadt
 Deep Blue Srl
 Institut Eurécom
 France Telecom Recherche et Développement
 IBM Research GmbH
 Université de Rennes 1 – IRISA
 Université de Toulouse III – IRIT
 Vytautas Magnus University, Kaunas
 Fundação da Faculdade de Ciencias da Universidade de Lisboa
 University of Newcastle upon Tyne
 Università di Pisa
 QinetiQ Limited
 Università degli studi di Roma "La Sapienza"
 Universität Ulm
 University of Southampton

3

Deliverable D11:
Support for Resilience-Explicit Computing - first edition

Co-ordinator: Tom Anderson4

Editors: Zoe Andrews4, John Fitzgerald4

Contributors in ReSIST: Tom Anderson4, Zoe Andrews4, Cinzia
Bernardeschi5, John Fitzgerald4, Michael Harrison4, Marc-Olivier
Killijian3, Imre Kocsis1, Melinda Magyar1, Istvan Majzik1, Zoltan
Micskei1, Ian Millard7, Nick Moffat6, Peter Popov2, Peter Ryan4, Robert
Stroud4

External contributor: Giovanna Di Marzo Serugendo (Affiliate
Researcher, Birkbeck College)
Comments: ReSIST Res-Ex SIG, ReSIST Executive Board

1Budapest University, 2City University, 3LAAS-CNRS, 4Newcastle University,
5University of Pisa, 6QinetiQ, 7Southampton University

4

Contents
1 Introduction ... 6

1.1 Resilience-Explicit Computing... 6
1.2 Approach ... 8
1.3 Report Structure... 9

2 First Edition Resilience Mechanisms ... 9
2.1 Cooperative Backup... 9
2.2 Consensus Mechanisms ... 10
2.3 ModelWorks .. 11
2.4 Robust Re-Encryption Mixes ... 11
2.5 Dynamic Function Allocation .. 12
2.6 Supervisory Systems.. 13
2.7 Autonomic Computing Architecture... 13
2.8 Robustness Testing .. 13
2.9 Model-based Stochastic Dependability Evaluation Tool........................... 14
2.10 N-Version Programming/1/1 .. 14
2.11 Recovery Blocks/1/1 .. 15
2.12 N-Self-Checking Programming/1/1 .. 15
2.13 Classification of First Edition Mechanisms .. 15

3 Interfaces for Adding/Viewing Res-Ex Mechanism Descriptions 19
3.1 Accessing Mechanism Descriptions ... 19

3.1.1 Human-Readable Mechanism Descriptions 19
3.1.2 Triple Browser ... 20
3.1.3 SPARQL Interface ... 22

3.2 Adding Mechanism Descriptions ... 23
3.2.1 Creating, Saving and Editing Mechanism Descriptions..................... 23
3.2.2 Entry Types.. 23
3.2.3 Common Problems... 28

3.3 Mechanism Description Fields ... 30
3.3.1 Overview ... 30
3.3.2 Classification ... 31
3.3.3 Further Details ... 31
3.3.4 Prerequisites... 32
3.3.5 Resilience Metadata ... 32
3.3.6 Supporting Documents, if applicable .. 33
3.3.7 Research Areas... 34

4 RKB: Overview and Res-Ex Extensions .. 34
4.1 RKB Technologies... 34
4.2 RKB Content ... 35
4.3 Res-Ex Ontology ... 36

5 Related Work... 38
5.1 Multi-Agent Systems ... 38
5.2 Web Services ... 39
5.3 GRID computing ... 39
5.4 Dynamic reconfiguration.. 40
5.5 Component-Based Software: selecting components.................................. 41

6 Evaluation and Future Work .. 41
6.1 Exploitation of Metadata and Mechanisms... 42
6.2 Second Edition Mechanisms .. 44

5

6.2.1 Need for a Second Edition.. 44
6.2.2 Potential Second Edition Mechanisms .. 45

6.3 Entry Interface ... 46
6.4 RKB Explorer Interface and Res-Ex Ontology ... 47
6.5 Concluding Remarks.. 48

References... 49
Appendix A: Res-Ex Case Study in Overview... 53

A.1 Introduction .. 53
A.2 Decision Making with Metadata.. 53

Appendix B: Completeness of First Edition Mechanism Descriptions...................... 56
Appendix C: Competency Questions ... 58

6

1 Introduction

This report forms part of Deliverable D11, from ReSIST Work Package 1 (Integration
Technologies). In accordance with the Programme of Work, the deliverable is:

Support for resilience-explicit computing (first edition), prepared by task IT-
T2: This deliverable will demonstrate how resilience mechanisms can be
represented in terms of resilience metadata and will describe the extended
resilience ontology, with reference to the content and organisation of the
validated knowledge base.

The deliverable has two components. First, the extended ReSIST Resilience
Knowledge Base (RKB) contains “first edition” descriptions of resilience mechanisms
in terms of resilience metadata, based on an extended resilience ontology. Second,
this report provides an overview of the mechanism descriptions, the interfaces and
mechanisms available for contributing further content, and the potential for extending
the repertoire of mechanism and metadata descriptions in future.

1.1 Resilience-Explicit Computing
A long-term goal of current research is the provision of methods and tools that
support the development and operation of ICT systems that exhibit predictable levels
of resilience. Current system development methods rarely treat resilience-related
information explicitly, making it difficult to predict system resilience and identify
weaknesses. By contrast, in a resilience-explicit (Res-Ex) approach, information about
the resilience-related properties of components and infrastructure are stated explicitly
in the form of metadata published by components themselves, or by observers. Such
metadata can be used at design-time to inform the choice of design patterns and
development tools, or at run-time to tune or reconfigure, maintaining resilience. We
use the term resilience-explicit computing to encompass both the design-time and run-
time use of resilience-related metadata.

We use the term metadata to refer to information on which human or machine
decision-makers act in order to maintain or enhance a system’s resilience. We use the
“meta-” prefix in order to differentiate this from the data over which a system is
performing its functionality. Examples of metadata include: a person’s workload in a
socio-technical system, descriptions of known failure modes declared in the
functional specification of a component, or historical availability statistics. Metadata
could also be declared at different levels, such as components, the whole system or
even for the user-interface of the system. We may even conceive of a market in
trustworthy metadata, whereby metadata on service resilience might be provided by
third parties and used to govern run-time selection of components and services.

In order to support machine-assisted decision-making, especially at run-time, it
is necessary to develop languages for representing resilience metadata. Examples of
representations include simple enumerations (e.g., component integrity levels),
numeric representations (e.g., probabilities), or possibly formal logical descriptions
(e.g., functional preconditions). Semantics are required for metadata so that analyses
can be conducted consistently and with machine support. In particular, common
semantics are required to ensure compatibility of metadata from heterogeneous
sources (e.g., to ensure that metadata labelled “failure rate” from two different
component providers are either interchangeable or convertible). The analyses that we

7

envisage going on at run-time or design-time as part of the decision to adapt or
reconfigure may involve calculation over numeric metadata, logical deduction or,
most likely, a mixture of the two.

As well as precise descriptions of metadata, Res-Ex computing requires that we
have descriptions of the mechanisms that may be deployed or configured in order to
meet a resilience target. We therefore use the term resilience mechanism to refer to a
design pattern, technique or tool intended to improve system resilience. Examples
include fault-tolerant architectural patterns (e.g., n-version programming) and
development tools (e.g., robustness testing tools). In order to exploit resilience
metadata in machine-supported decision-making, we require theories that describe the
characteristics of the resilience mechanisms that may be deployed or configured
within a system in terms of the relevant metadata.

We focus on the decisions to select a particular resilience mechanism from among
alternatives and to instantiate or configure the mechanism for a specific application.
Such decisions may be made statically, at design-time, or dynamically within a
running system. In either case, in order to reach a resilience target, the decision-maker
requires metadata about the characteristics (e.g., failure rates) of components,
infrastructure and environment, and descriptions of the resilience mechanisms in
terms of their effects on metadata, for example failure rate of a fault tolerant assembly
in terms of failure rates of its components, or metadata generated by a robustness
testing tool. The resilience mechanism descriptions may be combined with metadata
to obtain a prediction of the consequences of a particular selection or configuration.

The goal of our work in ReSIST is to encourage the community to give
descriptions of mechanisms and metadata that support this decision-making process.
In particular, we wish to promote the contribution of mechanism descriptions in a
form that enables automated analysis. There is currently very little support for
gathering such descriptions or for making use of them. The descriptions of resilience
mechanisms available to practitioners at present are deeply embedded in the scientific
literature and are in many cases hard to extract. We wish to encourage researchers
developing new mechanisms to give descriptions that help answer the question “What
exactly does this mechanism achieve in terms of resilience?” We hope thereby to
encourage research to evaluate existing and new mechanisms, and scholarship in
codifying that information and making it available to practitioners. The work of
ReSIST Task IT-T2 is to develop a means of recording descriptions of resilience
mechanisms that are based on metadata and which integrate with the emerging
Resilience Knowledge Base (RKB). This allows mechanism descriptions to be linked
to other resilience knowledge through the emerging ontologies and through the
research and training/education data embedded in the RKB.

A Scenario

In order to further clarify the resilience-explicit computing concept, consider a simple
scenario (presented in more detail in Appendix A). A designer requires a system that
tolerates one (sequential) hardware fault and/or one software fault. The designer has
limited resources available and wishes to provide a cost effective solution. However,
the system must also be as reliable as possible. The designer knows about three fault-
tolerant architectures that would provide the necessary level of tolerance. These are,
in our terms, resilience mechanisms:

 Recovery Blocks (RB/1/1)

8

 N-Version Programming (NVP/1/1)
 N-Self Checking Programming (NSCP/1/1)

Which of these mechanisms provides suitable cost and reliability levels? Metadata
can be obtained for the three alternatives, including number of components, structural
overheads, and operational time overheads in normal operation and when errors
occur. For example, for RB/1/1, metadata includes1:

Total number of variants required (= 2)

Total number of hardware components required (=2)

Ratio of Development and Maintenance Cost of fault Tolerant versus Cost of
non-FT software (Min 1.33; Avg 2.17; Max 1.75)

Probabilities of detected and undetected failures on demand (as functions of
probabilities of independent faults in components and decider).

These metadata are described in more detail in Appendix A, where a decision
favouring RB on reliability and cost grounds is also illustrated. If other metadata, such
as the run-time overheads when errors occur, are also taken into account NVP or
NSCP may be preferable for different applications.

1.2 Approach
In order to make progress towards our goal of providing resilience-explicit guidance
for the developer community, we aim to provide metadata-based descriptions of a
large number and wide range of resilience mechanisms. We have begun this task by
asking specialists across the ReSIST network to provide a preliminary and broad-
ranging set of “first edition” descriptions. The mechanism descriptions provided are
described in overview in Section 2.

The full first edition mechanism descriptions have been included in the on-line
Resilience Knowledge Base (RKB) and are accessible to readers at
http://resist.ecs.soton.ac.uk/resex/. The RKB is a key integrative technology
contributed by ReSIST, gathering information on projects, publications, people,
resilience mechanisms, educational materials and course descriptions. The addition of
Res-Ex mechanism descriptions is part of the ongoing expansion of the value-added
content of the RKB. Incorporating the mechanism descriptions requires utilisation of
the existing ontological capability of the RKB, but expanding it to cover mechanisms
and metadata via a Res-Ex ontology. More information on this aspect is included in
Section 4.

Giving the RKB the capability of holding Res-Ex mechanism descriptions is not
sufficient to support expansion of the collection. There must also be an interface
whereby mechanism descriptions can be fed into the RKB and maintained once
entered. A prototype of such an interface has been developed and used for recording
the first edition mechanisms. Although this is a relatively mundane task, it is
nevertheless a substantive issue because the interface must align with the ontology.
Crucially, it must guide the creator of a mechanism description to answer the right
questions in the right context so that they deliver the required information in the
appropriate format. The interface and some of its rationale are considered in Section 3
(which is necessarily rather lengthy).

1 These metadata are derived from the comparative study in [Laprie et al., 1990].

9

1.3 Report Structure
This report is a guide to the metadata-based first edition mechanism descriptions, the
interface for viewing and editing them, and the RKB extensions to support such
descriptions. The first edition mechanisms are each briefly described in Section 2.
Full descriptions are in the on-line RKB (http://resist.ecs.soton.ac.uk/resex/); here we
briefly comment on each mechanism’s salient characteristics and issues that arose
during the entry of its description via the Res-Ex interface to the RKB. A user guide
to adding and viewing mechanism descriptions (Section 3) is followed by a brief
discussion of the extensions to the underlying ontology of the RKB (Section 4).
Looking forward, we relate the ReSIST Res-Ex work to research on run-time
selection and configuration of components and mechanisms in Section 5. Finally, in
Section 6 we discuss the potential exploitation of resilience metadata and
mechanisms, evaluate the first edition Res-Ex RKB extensions and look forward to
future work aimed at increasing the quality and breadth of metadata and mechanism
descriptions.

2 First Edition Resilience Mechanisms
In this section, we briefly review the example mechanisms included in the first

edition of the Res-Ex support embedded in the RKB. The mechanisms selected were
initially offered by members of the Res-Ex SIG2 and, later, by other ReSIST partners.
We endeavoured to include as wide as possible a variety of mechanisms, including
classical architectural mechanisms such as n-version programming, dynamic
mechanisms such as dynamic function allocation and design-time tools such as
ModelWorks. They represent contributions from each of the initial ReSIST Working
Group areas in resilience building (Architectures, Algorithms, Socio-technical
systems, Verification and Evaluation). Project partners were encouraged to use the
new interface to develop and record “first edition” mechanism descriptions and to
provide feedback on the process of doing so.

Descriptions of all the mechanisms listed below can be found in the RKB
(http://resist.ecs.soton.ac.uk/resex/). Appendix B shows to what depth the first edition
resilience mechanisms have been described by exhibiting the questions that have been
answered for each mechanism.

It may be observed that there are more mechanism descriptions in the RKB than
are listed here. This is because some of the first edition mechanism descriptions refer
to related resilience mechanisms for which simple placeholders consisting of just a
title and an overview have been created in the RKB.

2.1 Cooperative Backup
The primary objective of cooperative backup is to improve long-term availability of
data produced by mobile devices. The idea is borrowed from peer-to-peer cooperative
services: participating devices offer storage resources and doing so allows them to
benefit from the resources provided by other devices in order to replicate their data.
The described cooperative backup mechanism, which we call MoSAIC [Courtes et al.,
2006], can leverage (i) excess storage resources available on mobile devices and (ii)

2 The Res-Ex SIG is a special interest group on resilience-explicit computing consisting of ReSIST
members and affiliate researchers.

10

short-range, high-bandwidth, and relatively energy-efficient wireless communications
(Bluetooth, ZigBee, or Wi-Fi).

Participating devices discover other devices in their vicinity using a suitable
service discovery mechanism and communicate through single-hop connections,
thereby limiting interactions to small physical regions. Anyone is free to participate in
the service and, therefore, participants have no prior trust relationship. When out of
reach of Internet access and network infrastructure, devices meet and spontaneously
form ad hoc networks which they can use to back-up data. Devices eventually send
data stored on behalf of other devices to an agreed Internet-based store. Eventually,
data owners may restore their data by querying the store.

Representing this mechanism in the resilience-explicit knowledge base was
relatively easy as we have been studying its design and implementation for a long
time. When necessary, one can consider this mechanism as mostly a composition of
other mechanisms that need to be parameterized. For example, a potential
decomposition of the cooperative backup mechanism into smaller components can be
based on a resource discovery component, a trust and cooperation incentive
mechanism, a proximity map. Additionally, we have conducted an extensive analytic
evaluation of various parameters of the mechanisms, which has been very beneficial
for expressing the mechanism’s metadata [Courtès et al., 2007].

2.2 Consensus Mechanisms
The consensus problem [Pease et al., 1980] in distributed computing encapsulates the
task of group agreement in the presence of faults. In particular, any process in the
group may crash at any time. Consensus is fundamental to core techniques in fault
tolerance, such as state machine replication. However, there are some difficulties in
achieving consensus in the presence of faults under a particular set of system and
failure assumptions:

• In a synchronous system, it is possible to solve the consensus problem
using a Byzantine Agreement Protocol. However, in order to tolerate n
Byzantine failures, it is necessary to have 3n+1 processes.

• In an asynchronous system, it has been proved that is impossible to solve
the consensus problem in general. However, a number of approaches
have been proposed that either weaken the asynchrony assumption in
some way, or else weaken the consensus property itself.

Expressing consensus as a resilience-explicit mechanism is non-trivial because it
is not really a single mechanism, but rather the specification for a distributed problem
that needs to be solved, plus a set of algorithms or protocols that solve the problem or
a variant under a specific set of system and failure assumptions. The existing model
of a resilient explicit computing mechanism is not rich enough to capture these
various subtleties and relationships, but as future work it would be worth trying to
tease out the distinction between a specification, a set of related implementations of
the specification, and the system and failure assumptions that each implementation
depends on.

The approach that has been adopted for the current version of the deliverable is as
follows:

• A top-level description of a consensus mechanism has been provided,
together with three more specific descriptions of particular consensus
mechanisms (“BFT - Practical Byzantine Fault Tolerance” [Castro et al.,

11

1999], “Signal-On-Fail based consensus protocol” [Inayat et al., 2006]
and “Sintra - Secure Intrusion-Tolerant Replication Architecture”
[Cachin et al., 2000]).

• Each mechanism refers to the other mechanisms, and a special
Consensus concept is introduced to link the specific instantiations of the
consensus mechanism.

• The subtleties of the various system and fault models used by each
mechanism are described under "Other Prerequisites" rather than as
metadata. This is because it would be very difficult to capture them
using the existing categories of metadata - clearly, more research is
required into how to describe these assumptions more formally as
metadata, but this task is left for the next deliverable.

• Many of the attributes of the various consensus mechanisms are the
same, or could be inherited from the top-level description. However,
since the current version of the deliverable does not support inheritance,
these attributes have had to be entered manually, and a certain amount of
iteration was necessary before all four descriptions were consistent.

2.3 ModelWorks
ModelWorks is a QinetiQ in-house formal modelling tool. It consists of a GUI front-
end to (currently) two formal modelling components: the Dependability Library and
support for Assumption-Commitment (AC) reasoning. The ModelWorks GUI
includes an editor for building graphical system design models and specifying system
properties. There is an automatic translation capability from system designs to formal
CSP (Communicating Sequential Processes) models, which can then be analysed by
external automated tools. A wide range of discrete distributed systems can be
modelled, and analysed with respect to safety, availability and security properties.

The chief difficulty with the description activity was the question of how the
mechanism should be viewed: does an analysis tool perform fault forecasting, fault
detection or both? If one considers a process that includes “Analyse using the tool,
then act on the results by fixing discovered (detected) faults”, then does this perform
fault tolerance? One approach is to characterise the mechanism itself strictly, not any
way in which one might use it in a containing ‘process mechanism’. Another is to
characterise all ways in which it might be used. We could allow ourselves separate
mechanisms a) “the tool” and b) “use the tool, then act on the results in some defined
way” and describe these separately in terms of their direct application/benefit. Finally,
precise and meaningful characterisation of tool effectiveness may only be possible
with reference to standard benchmarks, which do exist currently.

2.4 Robust Re-Encryption Mixes
Re-encryption mixes are a mechanism for providing anonymity in voter-verifiable
voting systems [Ryan et al., 2006]. In essence, voters are provided with unique
“protected receipts” at the time of casting that carry their vote in encrypted form. All
receipts should be posted to a secure Web Bulletin Board (WBB). Voters can confirm
that their receipt is correctly posted. Re-encryption assumes that plain text is
encrypted using a randomised public key algorithm. In effect, it re-randomises the
encryption without changing the plaintext and the plaintext is not revealed during the
process. A set of mix tellers perform re-encryption mixes: each teller takes in a batch

12

of receipts as posted to the WBB, transforms each by re-encryption and posts the
resulting batch of re-encrypted terms to the next column of the WBB. This can be
done as many times as required. Once a suitable number of such mixes have been
performed (to achieve whatever level of defence in depth for ballot secrecy is deemed
appropriate) and all the shuffles posted to the WBB, independent auditors perform a
Partial Random Check on the posted information such that each transformation has a
50/50 chance of being audited. If the posted information passes the audits, decryption
tellers take over the decryption of the now (multiply) shuffled ballots. Once the
ballots have been decrypted, a universally verifiable count can be performed.

The main challenge with recording this mechanism was relating it to the
dependability and security ontology, which currently lacks some concepts relevant to
security or cryptography applications, for example authentication mechanisms, zero
knowledge proofs and coercion resistance. The extension of the ontology with more
detailed security-related concepts is being addressed in the Resilience Ontology
(ResOn) Special Interest Group within ReSIST.

2.5 Dynamic Function Allocation
Two mechanisms are described under this heading. The first is a design process that
involves deciding how to automate a control system in order to support the human
operator within that system most effectively. The second is the result of the design
process where a control system is designed to adapt to the current situation in order
that the human operator can maintain control in the face of considerations such as
workload or situation awareness that will affect the operator’s resilient performance.

A control system consists of functions designed to achieve the various aspects of
the control task. The system allocates its functions differentially at different levels of
automation involving more or less participation by the human operator. A level of
automation for a function may require the operator to carry out the function entirely,
or to supervise the completion of the function with a power to interrupt, or to be
unaware of the function entirely. The full range of automation options in relation to a
human role is discussed in [Dearden et al., 2000]. Controlling the system will involve
a combination of these executing functions, requiring different levels of operator
control. It may involve different strategies, combining the use of functions in terms of
procedures in different ways depending on different factors (for example, the check
out operator in a supermarket may choose to help the customer to pack purchased
items if too many items have piled up in the purchased hopper). The mechanism by
which different automation choices are made may be controlled by the operator but it
may be automatic and may involve a decision procedure that samples measures
associated with a number of factors: time on task; error rate; physiological workload
may be used for example and may be used in combination.

There are a number of reliability metadata, some of which are difficult to measure:
error rates; human workload; situation awareness. These are distinct concepts from
those found elsewhere in the resilience literature. Both the design process and
adaptive automation mechanism are decision procedures involving a utility trade-off.

Recording the mechanism description raised several interesting challenges. First,
it was important to clarify the distinction between the process of deciding how to
perform a dynamic function allocation and the mechanism of dynamic function
allocation itself. This suggests that contributors will benefit from improved guidance
on what constitutes a mechanism. The examples provided to help enter the

13

information into the RKB were resilience “mechanisms” in a traditional sense, that is
mechanisms invoked at run time in a target system (for example recovery blocks).
This did not help to understand the information that was required for a resilience
mechanism that was to be incorporated as part of a design process, the performance of
dynamic function allocation. Second, regarding RKB data entry, it would have been
beneficial to have the mechanism description at an earlier stage. A trigger on how to
describe possible metadata would also have been helpful. Third, the required metadata
did not already exist and so had to be entered into the taxonomy; it would also have
been helpful to be able to record a concept hierarchy in the taxonomy.

2.6 Supervisory Systems
Supervisory systems are systems and architectures that, using agent based technology,
periodically sample the state and non-functional properties of resources and services
in a general purpose IT environment and forward this information to a central
management service. The management service deals with the persistent storage,
classification, correlation and visualization of measurements and events. Note that
most supervisory systems provide only a toolset out of the box; customarily,
configuration design is a fully-fledged project on its own. Technological approaches
on the agent level, the implicit/explicit nature of the data metamodel and the extent to
which a certain tool can be integrated into a full control loop account for the main
factors distinguishing available frameworks from the point of view of resilience
mechanisms.

In general, the description approach suited the mechanism quite well. However,
identifying the threats addressed was not an easy task. Currently, IT supervisory
systems generally do not use the well-established ontology of classic dependability;
their common set of metaphors does not even distinguish faults, errors and failures.
The distinction of monitoring for specific faults, errors or failures comes with the
design of the supervisory configuration and is, consequently, application-specific.

2.7 Autonomic Computing Architecture

The Autonomic Computing Architecture mechanism is an architectural mechanism
proposing a service-oriented architecture encompassing the notions of autonomic
components (services) managing their own behaviour on the basis of pre-established
policies [White et al., 2004]. The underlying service-oriented infrastructure supports
service/policy discovery and binding among the different autonomic elements. It also
provides specific elements that support autonomic components for reasoning,
negotiation, and monitoring. This specific architecture follows the generic
architectural blueprint for autonomic computing defined by IBM [IBM 2006].

This mechanism uses run-time monitoring to trigger dynamic reconfiguration on
the basis of the policies. It then becomes difficult to identify how to describe the
mechanism from a developer’s point of view, i.e., how to separate the metadata
aspects used for identifying the mechanism at design time from those used by the
mechanism during a run-time instantiation..

2.8 Robustness Testing
The goal of robustness testing is to generate and execute test cases to assess the
robustness of a computer system, i.e., the degree to which the system operates
correctly in the presence of exceptional inputs or stressful environmental conditions

14

[Micskei et al., 2006]. The approach of robustness testing is similar to functional
"black box" testing, but it concentrates on the activation of potential robustness faults.
To do this, exceptional inputs are generated on the basis of the system interface
specification, and stressful environmental conditions are provided by (i) a workload
that determines the utilization of the system and (ii) a fault-load that determines how
faults are injected into the environment of the system (e.g., hardware, operating
system, configuration options). The test outputs are evaluated looking for responses
(including crash and timeout) that do not comply with the specification.

The metadata included in the questionnaire characterise robustness testing as a
general process by providing the threats that are addressed, the knowledge and
infrastructure requirements, the failure modes, and the type of this verification
method. These metadata highlight prerequisites of robustness testing (e.g., the
interface description to be used to generate exceptional values) and its role in
increasing the resilience of a system. Note, however, that in the case of a functional
testing approach like robustness testing, there are no clear quantitative measures
(metadata) that can be used to compare this process with other potential testing
processes.

If a concrete robustness testing tool (e.g., a test generator or test harness) were to
be described, then the above metadata could be extended with metadata characterizing
the concrete input and output formalisms, the resource requirements and the other
peculiarities of the tool that implements the general process.

2.9 Model-based Stochastic Dependability Evaluation Tool
The model-based stochastic dependability evaluation tool [Majzik et al., 2007]
constructs a mathematically precise dependability model (in the form of a stochastic
Petri net) from a UML-based architecture model of the system, and evaluates the
model to get system level dependability measures (like reliability and availability)
using the local dependability parameters (like fault occurrence rate, error latency,
repair delay) of system components.

Since this mechanism is implemented by a tool, the hardware and software
requirements were defined easily. The underlying mechanism is a model
transformation with two steps, so the description of this process needed more effort.
The related concepts, metadata, ontology and publication had to be collected. The
selection of the failure modes and the research interests was a more difficult task
because there were several choices which are not independent. The same problem
occurred in the context of threats addressed and research interests.

2.10 N-Version Programming/1/1
The N-Version Programming/1/1 (NVP/1/1) mechanism is a specific variant of a
classical fault-tolerant architecture described in the n-version approach to fault-
tolerant software [Avizienis 1985]. This variant, described by [Laprie et al., 1990],
addresses hardware fault tolerance as well as software fault tolerance. It uses three
diverse implementations of a software module, each of which runs on distinct
hardware, and voting on the results to provide fault tolerance.

It was straightforward to describe this mechanism in the Res-Ex interface.
However, the description would be improved if it were possible to use the ontology
and interface to directly link separate items of metadata by mathematical formulae to
create different composite metadata, or just provide a different view of the same

15

metadata. It was also quite challenging to decide on the failure modes of the
mechanism and to elicit the required knowledge for using it.

2.11 Recovery Blocks/1/1
The Recovery Blocks/1/1 mechanism is a specific variant of the classical recovery
block approach to error recovery and fault tolerance as described in [Horning et al.,
1974]. The variant described here is that from [Laprie et al., 1990], which they call
RB/1/1, and treats the recovery block as a mechanism expressed via recovery block
syntax and implemented with support for backward recovery. The specific variant
considered has two alternate blocks and also provides hardware fault tolerance by
replicating the two blocks on a distinct hardware platform that runs in hot standby.

As with N-Version Programming/1/1, this mechanism was not overly difficult to
describe in a resilience-explicit way. One issue that was raised when doing so was the
importance of being clear about exactly what is being described. Different people
have different interpretations about the scope of a mechanism; therefore, it is
important to clearly state the scope within the mechanism description. The comments
on describing N-Version Programming/1/1 also apply to this mechanism.

2.12 N-Self-Checking Programming/1/1
N-Self-Checking Programming provides fault tolerance through the use of two or
more components, each with the ability to check their own dynamic behaviour,
running in hot standby. Such self-checking may be carried out in a number of ways.
In the specific variant considered here, N-Self-Checking Programming/1/1 [Laprie et
al., 1990], there are two self-checking components. Each self-checking component
has two diverse implementations of a software module and compares the results from
these implementations to check its behaviour. Thus, there are in total four
implementations of the software module, all of which are diverse.

This mechanism is closely related to N-Version Programming/1/1 and Recovery
Blocks/1/1. Therefore, the reader is referred to the points raised previously about the
ease of providing resilience-explicit descriptions of such mechanisms.

2.13 Classification of First Edition Mechanisms
The mechanism descriptions in this section are not presented in a structured way.
Indeed, many classification schemes can be considered. Table 1 provides
classification of the mechanisms according to a variety of key characteristics:

• The partner responsible for contributing the mechanism description.

• The mechanism objectives.

• Whether the mechanism is an architecture, a process or a tool.

• The development/operational phase during which the mechanism can
be applied (design, development more generally or run-time).

• Whether the mechanism provides fault detection, fault forecasting,
fault removal, and/or fault tolerance.

• The resilience-building technology (RBT) with which the mechanism
is most closely associated (corresponding to ReSIST Working
Groups):

16

o Architecture – resilience architecting and implementation
paradigms.

o Algorithms – resilience algorithms and mechanisms.

o Socio-Technical – resilient socio-technical systems.

o Verification – methods and tools for verifying resilience.

o Evaluation – methods and tools for evaluating resilience.

• The resilience-scaling technologies with which the mechanism is most
closely associated (corresponding to ReSIST Working Groups):

o Evolvability – Resilience evolvability, maintaining resilience
during activities such as upgrading, recovery and fault handling,
adaptation and reconfiguration.

o Assessability – Resilience assessability, the ability of a system to
assess its correct functioning and quality of service delivered under
both nominal and stressful conditions.

o Usability – Resilience usability, achieving or assessing usability of
systems, particularly ubiquitous ones. Helping users interacting
with ubiquitous systems to understand the potential effects of their
actions as well as preventing them from taking actions with
unwanted and difficult to anticipate system-level effects.

o Diversity – Resilience diversity, the use of components that can
perform similar functions in the system context but differ in some
essential aspect that affects their vulnerability.

• The types of system to/within which this mechanism can be applied.

• The main direct benefits of the mechanism, in terms of improved
system resilience (in the case of run-time deployment mechanisms) or
assurance of key system properties (in the case of pre-deployment
analysis tools); the latter type of benefit could lead to improved
resilience of whatever systems are deployed, through bug-finding and
potential freeing up of resources for other development activities, by
achieving assurance at reduced cost.

When selecting the first edition of mechanism descriptions, we aimed for coverage of
the resilience building technologies identified in the ReSIST programme. Table 1
shows that we succeeded in achieving such coverage. This provided a collection of
complementary mechanisms that highlighted the variety of approaches required for
creating such a broad set of mechanism descriptions.

17

Partner Objectives Category Phase Fault
Actions

Res-Building
Tech.

Res-Scaling
Tech.

Systems Direct Benefits

Consensus
Mechanism

Newcastle Group agreement in the presence of
faults.

Architecture Run-time Forecasting Algo Divers Distributed
computer
systems

Agreement among
correct components

Dynamic
Function
Allocation

Newcastle To support the human operator
effectively and resiliently in carrying
out their control tasks.

Architecture Run-time Tolerance Socio Assess Human-machine
control

Effectiveness (incl.
efficiency) and
resilience

N-Self-Checking
Programming/1/1

Newcastle To tolerate faults through the use of
components with the ability to check
their own dynamic behaviour.

Architecture Run-time Tolerance Arch Assess,
Evolv,
Divers

Systems with
self-checking
components

Fault tolerance

N-Version
Programming/1/1

Newcastle To utilise design diversity and voting
in order to tolerate software faults

Architecture Run-time Tolerance Arch Assess,
Evolv,
Divers

Systems with
diverse
components

Software fault
tolerance

Recovery
Blocks/1/1

Newcastle To provide backward recovery to
isolated sequential programs

Architecture Run-time Tolerance Arch Assess,
Evolv,
Divers

Sequential
programs

Error recovery

Robust re-
encryption mixes

Newcastle To provide ballot secrecy by
anonymising ballot receipts.

Process,
Architecture

Run-time Tolerance Algo Assess Ballots Security, anonymity,
auditability

Model based
stochastic dep.
evaluation tool

BUTE Model-based evaluation of
architectural alternatives from the
point of view of availability and
reliability.

Tool Design Forecasting
(&
Removal)

Eval Assess Distributed Assurance of
availability and
reliability

Robustness
testing

BUTE To generate and execute test cases
to assess the robustness of a
computer system.

Tool/
Process

Development Forecasting
(& removal)

Verif Divers/
Assess

ICT + stressful
environments

Assurance of
robustness

Supervisory
Systems

BUTE To support real-time monitoring and
visualisation of state and non-
functional properties of hardware,
software and service components in
general IT infrastructures.

Architecture Run-time Detection Arch Assess General
purpose IT

Real-time monitoring
and visualisation

Cooperative
Backup

LAAS Long-term availability of data
produced by mobile devices.

Architecture Run-time Tolerance Arch/ Algo Divers Systems
containing
mobile devices

Long-term-availability,
reduced local storage
need

Modelworks QinetiQ To provide scalable dependability
assessment of systems

Tool Design Forecasting
(&
Removal)

Eval Assess Distributed Assurance of safety,
liveness and security

Autonomic
Computing
Architecture

ReSIST
affiliate
researcher

To provide an architectural approach
to autonomic computing: self-
configuration, self-healing, self-
protection, self-optimisation.

Architecture Run-time Tolerance,
Removal

Arch Evolv Autonomic Efficient and resilient
sharing of resources

Table 1: Summary of First Edition Resilience Mechanisms

18

3 Interfaces for Adding/Viewing Res-Ex Mechanism
Descriptions

We aim to encourage a wide range of contributors worldwide to provide mechanism
descriptions. For this first edition, we therefore developed a web-based interface that
contributors from across the project could use as a common way of entering mechanism
descriptions into the RKB. The use of a common format facilitates comparison between
mechanisms and ensures that key questions, for example, regarding resilience metadata,
are answered. The fact that the interface connects mechanism descriptions directly into
the RKB brings the benefit of linage between mechanism descriptions and other RKB
entities, including relevant people, publications and projects.

The interface has been implemented as an extension of a generic form-based interface
developed for use with various ReSIST activities, which enables knowledge acquisition
against an underlying ontology. Through the use of a configuration script that prescribes
the type of input control to present and other details for each ontological concept, an
interface is automatically generated which enables data input and subsequent editing by
authorised users, combined with a simple read-only display of the data for public
viewing. The resilience-explicit (Res-Ex) mechanisms interface can be found at
http://resist.ecs.soton.ac.uk/resex/.

3.1 Accessing Mechanism Descriptions
There are three ways in which the mechanism descriptions held within the RKB can be
accessed: a human-readable interface intended as the main means of browsing and
updating descriptions; a tabular view of raw data (the Triple Browser) and a direct query
mechanism (in SPARQL).

3.1.1 Human-Readable Mechanism Descriptions
The resilience-explicit computing mechanisms interface (shown in Figure 1) presents a
list of known mechanisms, permitting public access to a human readable presentation of
the information stored.

By clicking on the title of a mechanism, a simple page will be displayed detailing the
properties and values constituting the mechanism description. Where possible, for
externally referenced resources such as publications, direct links are made to online
versions of those resources. Where these are not available, and for other resources such
as the resilience metadata values, links are presented to a raw view of the underlying
semantic information in the RKB Triple Browser (see Section 3.1.2).

For authenticated users, the list of mechanisms is augmented with additional options
to permit editing or deletion of mechanism descriptions.

19

Figure 1: Res-Ex interface front page

3.1.2 Triple Browser
The RKB presents a generic web-based interface facilitating a tabulated view of the raw
knowledge contained regarding a given resource. A simple search mechanism is
implemented to enable users to find the URIs of semantic resources that have literal
values which match a given string, in addition to allowing direct access to viewing the
details of a specific URI. Again, this is a public access service, available at
http://resist.ecs.soton.ac.uk/browse/.

When a particular URI is viewed in the triple browser, a table of data is presented in
two halves, showing RDF triples (facts) from within the knowledge base. The upper half
shows details for which the resource in question is the subject of a relation, i.e., facts in
the format <URI> <predicate> <value>. Conversely, in the lower half, facts are shown in
which the requested resource appears as the third term, i.e., <value> <predicate> <URI>.
Figure 2 shows the triple browser view of information that can be found in the RKB
about the SIG on resilience-explicit computing.

20

Figure 2: Example triple browser page

The table of triple values is additionally augmented with a fourth column, identifying
the source data from which each fact originated. Where resources have properties
defining an rdfs:label value, these are used to display a "pretty" or human readable name
instead of the raw URI. Similarly, predicates from known namespaces are abbreviated to
a more readable format. Hovering the cursor over a URI, pretty name, or predicate will
display the raw URI which is represented.

Users may navigate the entire knowledge base through the underlying connected
graph representation of RDF. Each URI presented as a subject, relation or object within
the table of triples is clickable, changing the focus of the triple browser to reflect that
resource. For example, when viewing a person, the table will present facts such as
<person> <works-at> <organisation>, and <paper> <has-author> <person>. Selecting the
organisation would show not only further details of that resource, but also all other
people in the knowledge base who work there in the form <someone> <works-at>
<organisation>. Likewise, one can navigate from a person to a particular publication,
then to details of a co-author, and see their publications.

While the Triple Browser is not the most elegant of interfaces, it does provide a very
useful means of viewing the underlying data, and is reasonably intuitive for non-expert
users.

21

3.1.3 SPARQL Interface
The RKB offers a direct query mechanism, through an implementation of the SPARQL
Query Language for RDF3 at http://resist.ecs.soton.ac.uk/sparql/.

By submitting triple-pattern queries in the SQL-like SPARQL language, low level
results may be obtained in both XML and tab-delimited ASCII formats. For example, the
following query will return a set of results which consists of the identifier and name of all
resources that are of type resex:Resilience-Mechanism.

SELECT * WHERE {
?id rdf:type resex:Resilience-Mechanism.
?id akt:has-title ?name

}

Figure 3 shows the results page that is returned on submitting this query to the SPARQL
interface.

Figure 3: An example SPARQL interface results page

The provision of open access to the entire contents of the RKB through a standard
interface enables external software processes to easily integrate with the knowledge
available. This leads to the opportunity for systems to be developed which interrogate
the RKB to discover resilience mechanisms with particular properties or those which

3 W3C Candidate Recommendation, 14 June 2007, http://www.w3.org/TR/rdf-sparql-query/

22

satisfy given constraints, as part of both development-time system proof and analysis
tools, in addition to dynamic run-time configuration roles.

3.2 Adding Mechanism Descriptions
A forms-based interface (at http://resist.ecs.soton.ac.uk/resex/) has been developed for
adding metadata-oriented descriptions of resilience mechanisms to the RKB. Users
answer a series of questions about the resilience mechanism that is being described. This
section provides an overview of how the user interacts with the interface to complete the
forms. The details of the questions asked can be found in Section 3.3.

The interface has been developed for compatibility with version 2 of the Firefox
browser4. It is therefore recommended that this browser is used when entering
descriptions of resilience mechanisms.

It is important to be clear about exactly what resilience mechanism is to be described
and at what level of specificity before beginning to enter metadata about it into the
interface (see Section 3.2.3).

The page for editing mechanism descriptions includes an “e-mail us” link for
reporting technical problems or suggesting improvements.

3.2.1 Creating, Saving and Editing Mechanism Descriptions
Users creating or editing a mechanism description must be known to the ReSIST wiki
and log on in the normal manner. Once logged on, users navigate to the main interface
page (http://resist.ecs.soton.ac.uk/resex/) to continue. The “click here” link under the
“Add a new mechanism” heading opens a blank form for mechanism entry.

Mechanism descriptions can be saved and returned to at any time. Following the
“Continue” links at the bottom of each page until the “Finish” button is clicked takes the
user to a human readable overview of the information added. The mechanism will then
appear in the list of mechanisms on the main page.

From the main page, an existing mechanism can be edited by clicking on the “Edit”
link next to its title. This opens the form with the previously entered information already
present and allows users to edit/delete information from, or add more information to, the
mechanism description. These changes can be saved as described above.

3.2.2 Entry Types
Several different types of data entry are used. Although most are intuitive, we provide an
overview of each of them below. The entry type of each field of the interface is given in
Section 3.3.

Text Field

A text field allows the user to enter a line of free text (Figure 4 shows an example from
the Res-Ex interface).

4 Available to download for free at http://www.getfirefox.com/

23

Figure 4: An example text field

Text Area

A text area allows multiple lines of free text to be entered (Figure 5).

Figure 5: An example text area

Multi Select

Items are selected by clicking on them; multiple items are selected by holding down Ctrl
(or the apple key on an Apple Mac) whilst clicking on them. Ctrl-click toggles the
selection status of the item clicked on. Further information about items in the list can be
obtained by hovering the mouse pointer over them. Figure 6 shows an example of a
multi select field in the Res-Ex interface.

Figure 6: An example multi select

Multi Select Allowing Additions

This is very similar to the multi select type described above but allows the user to add
items to the list of possible answers that can be selected by clicking on the “Add new
item” link below and to the right of the list of options (e.g., Figure 7).

Figure 7: An example multi select allowing additions

24

The “Add new item” link opens a sub form that allows the user to add the details of
the new item. An example of this sub form is shown in Figure 8. Users are advised to
employ meaningful names and provide a clear, generic description of the new item as
these items may be used subsequently in other mechanism descriptions.

Figure 8: An example sub form for adding items to a multi select allowing additions list

Searchable Item

The searchable item entry type allows users to search the RKB for items to associate with
a mechanism, including people, publications and existing mechanisms. This is used in
cases where the option of selecting items from a list would be time consuming due to the
huge number of possible answers. The user clicks on the “Add new item” link to reveal a
search form. Existing items of this type can be deleted if they are no longer wanted by
clicking on the red cross next to the summary (Figure 9).

Figure 9: An example searchable item

Users are currently recommended to use as specific a search term as possible to
reduce search time. Correct items are selected from the search results and saved. A search
may return many versions of a correct item (Section 3.2.3 explains why this happens);
selection of any option is sufficient. If the sought item is not found, it is possible to add
the required resource to the RKB. Clicking on the “Add new resource to RKB” link
below the search results takes the user to a sub form similar to the one shown in Figure 8.

25

Figure 10 shows an example search form in which the link for adding new items to the
RKB has been circled.

Figure 10: An example sub form for searching for items

Composite Item

Composite items allow users to enter data into the sub fields of an instance of resilience
metadata, such as the metadata type, value and units, and then associate this resilience
metadata instance with the mechanism. The user clicks on the “Add new item” link
below and to the right of the question, leading to a sub form that allows data entry for the
sub fields. A summary of the composite item will be displayed as a link in the main
form. In the case of resilience metadata the information shown in this link is of the form
<Metadata type> <Value> <Units>. Clicking on the link takes the user to the full details
of the composite type in the triple browser (see Section 3.1.2). Two buttons also appear
next to each composite entry link permitting editing or deletion of the entry. After
editing a composite entry both the updated version and its original version will be
associated with the mechanism description; the older version can be deleted by clicking
on the cross next to it. Figure 11 shows an example of a composite entry, with the edit
button circled.

26

Figure 11: An example composite item

Check Boxes

Check boxes are used for selection from a structured group of options such as a
hierarchy. In the case of the Res-Ex interface, check boxes allow the user to associate
research interests from the ReSIST ontology on dependability and security with their
mechanism. This approach is used because the ontology is highly structured. Figure 12
shows an excerpt from the check box representation.

A node in the tree structure is selected, by ticking the adjacent box. When ticked, this
node, and all of its children, is highlighted in yellow to indicate the selection that has
been made. Selecting a node automatically selects all of its children, for example if it is
stated that a mechanism relates to “Dependability, High Confidence and Survivability” it
also means that the mechanism relates to “Dependence”, “Trust”, “Attributes of
Dependable Systems”, “Availability”, etc., as is shown in Figure 12. If the user then
decides that the mechanism actually relates to a more specific aspect of “Dependability,
High Confidence and Survivability” such as “Trust” they should unselect the former and
tick next to “Trust” instead. Note also that each node is a sub-topic of its parent node;
therefore a mechanism is related to the parents of the selected nodes as well. Care is
needed, when users select related research areas for their mechanisms, to ensure that all
of the research areas that are selected (either manually, or automatically in the case of
children of selected nodes) are indeed directly related to the mechanism.

27

Figure 12: An example check boxes item showing part of the dependability and security ontology

3.2.3 Common Problems
Several common problems were identified when the first set of mechanisms were entered
into the RKB via the interface by the users. We describe them here in order to clarify the
underlying issues and to help prevent future users of the Res-Ex interface from making
the same mistakes.

Confusion about the scope of the mechanism description

When creating a resilience mechanism description, it is important to be clear and
consistent about what is to be described, and at what level of specificity. For example
recovery blocks could be described as a concept or general technique for providing

28

backward error recovery, however a specific implementation of it as a mechanism (such
as Recovery Blocks/1/1, see Section 2.11) is also a valid and useful mechanism
description. It is important that the reader knows exactly what is being described and that
this remains constant throughout the description. A common mistake is to try to describe
both the generic technique and a specific implementation of it within the same resilience
mechanism description.

Resilience metadata types and values

When adding a new item of metadata, the user is asked for the type of the metadata. This
is intended to represent a specific metric/property (such as mean time between failures,
workload, etc.). New items can be added to the set of metadata types in the RKB if the
required metric/property is not already present. The value box is meant to be a
value/formula for the metric/property that applies to the specific mechanism being
described. A common mistake is to use a high level item for the metadata type, such as
reliability, and then describe the metric of reliability being used in the value box. This is
not the intended use of these two fields. The specific metric/property should be entered
into the metadata type and the value field should be the value of, or equation for
calculating, this metric/property specific to the mechanism (or should be left blank if the
value is obtained dynamically when the mechanism is in use).

When adding new metrics/properties to the list of metadata types, it is important to be
as precise as possible in the definition to reduce the risk of ambiguity in multiple uses of
the type. Likewise when using an existing metric/property, it is necessary to check that it
is exactly what is required by reviewing the definition (revealed by hovering the mouse
over the metadata type).

Multiple replicated items in search results

When using search forms in the Res-Ex interface to query the RKB, a query may
generate a list of results that includes several different versions, or replicas, of the same
item. The data in the RKB is derived from many different sources, each with its own
representation of people, publications, etc. It is non-trivial to know that, for example, “J
Smith” from one source is the same individual as “Jim Smith” from a different source.
Ongoing work (at Southampton) aims to find means of discovering such correlations
automatically and collating data from different sources in a reliable way without multiple
representations of the same item. For the time being, if such a situation occurs, the user
can select any one of the valid options.

Not noticing the “Add new item” links

When answering questions with a “multi select allowing additions” entry type (see
Section 3.2.2), a number of people did not notice the “Add new item” link. This meant
that they either selected items that were already in the list but were not exactly what they
wanted, or omitted to answer the question even though it was relevant to their
mechanism. Users are advised to check for the “Add new item” option when choosing
options from a multi select list.

29

Incorrect usage of the description field when adding new items

When adding a new item to a multi select allowing additions entry type field (see Section
3.2.2), users are asked to provide a name and a description. Items that are added in this
way are available for any mechanisms to use. Thus, it is important that the description
section should provide a clear definition of the item added. A common mistake is to use
the description field of the item to describe how the item relates to the mechanism for
which it was added.

Relationship to working group comments

Step 2 of the questionnaire asks users to associate their mechanism with the new ReSIST
Work Package 2 Working Groups (Assessability, Diversity, Evolvability, Usability). The
subsequent four questions request the user to comment, if applicable, on the relationship
between the mechanism and these working groups. It was intended that these four
questions only be answered for the working groups selected in the prior multi select. For
example, if a user records that their mechanism relates to diversity and evolvability,
comments on the relationship to each of these working groups should be provided in the
appropriate text boxes. A common mistake is to enter comments in these text areas even
when the corresponding working groups had not been selected.

3.3 Mechanism Description Fields
In this section, we describe the information about resilience mechanisms that is stored in
the RKB. The guidance given in this section will assist the reader in interpreting the
information in the RKB. It should also help a contributor to enter meaningful
information about their own mechanism into the RKB. Specific guidance is given for
every question in the questionnaire along with the entry type for providing such data
through the Res-Ex interface. These entry types correspond to those described in Section
3.2.

3.3.1 Overview
The fields described in this section relate to the questions in step 1 of the online interface
to the RKB for entering resilience-explicit descriptions of mechanisms. This step of the
questionnaire provides a general overview of the mechanism.

Field Entry Type Guidance
Name of the
Resilience
Mechanism

Text field A title for the mechanism. This title should adequately identify
the mechanism.

Submitted By Multi select This records the contributor of the mechanism. The person(s)
identified here shall be the point of contact for any queries
relating to data entered into the interface about this mechanism.

Author of
Mechanism

Searchable
item

This records the authors of the mechanism. These people
should have a good understanding of the mechanism and may
be the same as those identified in the previous question.

Associated
Projects

Searchable
item

This records projects associated with this mechanism. Possible
associations include projects that funded research on the
mechanism, address similar aims or use similar techniques.

30

Mechanism
Objectives

Text area Summary of the purpose of the mechanism in a sentence or
two.

Detailed
Description

Text area A detailed description of the mechanism, which should be
detailed enough for the reader to be able to re-create the
mechanism. Either type the detailed description into this text
box or reference a paper containing such a description in the
next field.

Detailed
Description
Publication

Searchable
item

If applicable (see above), this record refers to papers providing
a detailed description of the mechanism.

3.3.2 Classification
The fields described in this section relate to the questions in step 2 of the online Res-Ex
interface to the RKB. This section provides classification of the mechanism in terms of
the structure and usage of the mechanism as well as the benefits of it.

Field Entry Type Guidance
Related Working
Groups (original)

Multi select Records the original ReSIST Work Package 2 Working
Group(s) (Architectures, Algorithms, Socio-Technical,
Verification, Evaluation) that are related to this mechanism.

Related Working
Groups (new)

Multi select Records the new ReSIST Work Package 2 Working Group(s)
(Assessability, Diversity, Evolvability, Usability) that are related
to this mechanism. For each Working Group selected here,
the appropriate comment boxes, from the next four fields,
should be completed.

Relation to
Assessability

Text area If assessability is selected in "Related Working Groups (new)",
this field should provide a comment on how this mechanism
relates to assessability.

Relation to
Diversity

Text area If diversity is selected in "Related Working Groups (new)", this
field should provide a comment on how this mechanism relates
to diversity.

Relation to
Evolvability

Text area If evolvability is selected in "Related Working Groups (new)",
this field should provide a comment on how this mechanism
relates to evolvability.

Relation to
Usability

Text area If usability is selected in "Related Working Groups (new)", this
field should provide a comment on how this mechanism relates
to usability.

Categorisation Multi select
allowing
additions

Provides categorisation of the mechanism for a number of
different classification schemes. This currently includes:
whether the mechanism is used at run-time or design-time;
whether it is a tool, architecture, process, etc.; the means for
attaining resilience – fault prevention, fault tolerance, fault
removal or fault forecasting. Additional categories or
classification schemes can be added to this list as appropriate.

Application
Domains

Multi select An indication of the application domain(s) the mechanism has
either been used in or may be suitable for use in. Application
areas include finance, manufacturing, aerospace, etc. and are
taken from the ACM classification system.

3.3.3 Further Details
The fields described in this section relate to the questions in step 3 of the online Res-Ex
interface to the RKB. In this section, further details such as the structure and variants of
the mechanism are provided.

31

Field Entry Type Guidance
Related
Concepts

Multi select
allowing
additions

This field provides key words for the mechanism. Important
concepts relating to the mechanism should be listed here.
Concepts can be added to this list as appropriate and a
description of the concept should be provided when doing so.

Main
Components

Multi select
allowing
additions

If the mechanism is component-based, e.g., an architecture,
this field records the main components constituting the
mechanism.

Mechanism
Variants

Text area Describes any variants of the mechanism (if any variants exist).

Related
Resilience
Mechanisms

Multi select
allowing
additions

This field provides a “see also” function, which refers the reader
to mechanisms related to this one. Possible associations
include mechanisms that address similar aims or use similar
techniques. Mechanisms can be added to the list offered. This
has the side effect of creating a stub for this new mechanism in
the list of mechanism descriptions.

3.3.4 Prerequisites
The fields described in this section relate to the questions in step 4 of the online Res-Ex
interface to the RKB. This section provides details of any prerequisites, such as
knowledge and infrastructure, for using the mechanism.

Field Entry Type Guidance
Application
Technologies

Multi select
allowing
additions

Lists the types of system to which the mechanism can be
applied. For example, triple modular redundancy can only be
applied successfully to technologies in which design failures do
not play a significant part, e.g., hardware technology. New
technologies can be added to this list.

Knowledge
Requirements

Multi select
allowing
additions

Lists any areas of knowledge that may be needed prior to using
this mechanism. For example, a verification tool may require
some knowledge of the underlying formalism. New knowledge
areas can be added to this list.

Infrastructure
Requirements

Multi select
allowing
additions

Lists any particular infrastructure elements the use of this
mechanism requires. For example, a tool may only run on
Windows XP and may need a Java runtime environment. New
infrastructure elements can be added to this list.

Other
Prerequisites

Text area Describes any other prerequisites there may be for using this
mechanism that are not covered by the previous fields.

3.3.5 Resilience Metadata
The fields described in this section relate to the questions in step 5 of the online Res-Ex
interface to the RKB. This section takes a detailed look at how the mechanism improves
the resilience of a system. In this section, domain specific metrics are associated with a
mechanism. New metrics may be defined as required.

Field Entry Type Guidance
Failure Modes Multi select Lists the ways in which this mechanism can fail to function as

intended. If the mechanisms were considered as a black box,
these are the kinds of failures one might observe from it. The
failure modes are all taken from the ReSIST ontology on
resilient, survivable and dependable systems.

Threats
Addressed

Multi select Lists the threats to resilience that this mechanism aims to
address, i.e., the faults it aims to remove, the errors it aims to
compensate for and the failures it aims to prevent. The threats

32

are all taken from the ReSIST ontology on resilient, survivable
and dependable systems.

Resilience
Metadata

Composite This question provides information about the effect this
mechanism has on the resilience of a system. The aim is that
the additional domain specific metadata described here could
be used to compare several different mechanisms that address
a similar aim and support the selection of one that is most fit for
a specific purpose. New metrics can be defined and
mechanism-specific values can be assigned to metrics.

Details of the fields of this composite metadata are given in the
table below.

Resilience Metadata Fields

This section describes the fields of the composite field, Resilience Metadata, which is
used for describing items of resilience metadata specific to the mechanism.

Field Entry Type Guidance
Metadata Type Multi select

allowing
additions

The metric/field for the metadata. A precise description is given
for each metric that allows accurate interpretation and
comparison of the values assigned to this metric. For example,
the metric “Mean Time Between Failures” could be described to
provide the mathematical arithmetic mean amount of time
between failures of the system. Other metrics may instead
require some textual description of less formal properties.
When entering metadata and choosing a metric/field for it, take
care to make sure that the definition of the metric is the same
as your understanding of it as it will be expected that values of
the same metadata type can be meaningfully compared. New
resilience metadata metrics/fields can be added to the list.
(Note that, for technical reasons, the addition of new metadata
metrics/fields to the list must be done with Firefox web browser,
at least version 2.0).

Value Text area A value or equation expressing the value of this metric/field for
this mechanism. If the value is acquired dynamically at run-
time, this may be stated here, or it may be the case that this
field is left empty.

Units Text field States the units in which the value is expressed, if applicable.
For example a mean time between failures may be expressed
in seconds, minutes, hours, etc.

Acquisition
Method

Multi select The method by which the metadata can be acquired. In
particular if the metadata is acquired dynamically at run time, it
should be stated here whether such metadata is published by
some part of the mechanism itself, or whether a third party is
required to observe the behaviour of the mechanism and infer
the metadata from their observations. It also states whether
this metadata can (or needs to) be calculated from other
metadata.

3.3.6 Supporting Documents, if applicable
The fields described in this section relate to the questions in step 6 of the online Res-Ex
interface to the RKB. This section provides references to any supporting documents
(including web pages) that provide additional useful information about the mechanism to
the reader.

33

Field Entry Type Guidance
Formal
Description

Searchable
item

Provides references to documents/web pages that contain a
formal description of this mechanism, if such publications exist.

Ontology Searchable
item

Provides references to documents/web pages that contain an
ontology of the main concepts relating to this mechanism, if such
publications exist.

Diagrams Searchable
item

Provides references to documents/web pages that contain
diagrammatic representations of this mechanism, if such
publications exist.

Examples Searchable
item

Provides references to documents/web pages that contain
examples of the use of this mechanism, if such publications exist.

FAQ Searchable
item

Provides references to documents/web pages that contain
frequently asked questions and answers for this mechanism, if
such publications exist.

Other Related
Publications

Searchable
item

Provides references to any other documents/web pages that
contain relevant information about this mechanism.

3.3.7 Research Areas
The field described in this section relates to the question in step 7 of the online Res-Ex
interface to the RKB. This section of the interface allows the user to indicate the research
interests from the ReSIST ontology that relate to their mechanism.

Field Entry Type Guidance
Research
Interests

Check
boxes

Records research interests that are related to this mechanism.
All research interests are taken from the ReSIST ontology on
resilient, survivable and dependable systems.

4 RKB: Overview and Res-Ex Extensions
The goal of this area of ReSIST’s work is to develop a resource that can help the
community gain the most value from its knowledge assets. The Resilience Knowledge
Base (RKB) utilises powerful Semantic Web technologies to store detailed descriptions
of resources (people, projects, publications, courses), and offers many benefits over and
above the results of applying conventional web-based search engines, enabling rich
annotation and the synthesis of data from disparate sources. For example, through the
application of ontological mapping, researchers may access information which is relevant
to their query terms, but which has originated from sources or been described in
vocabularies with which they are not familiar.

This section provides an overview of RKB technologies and content (Sections 4.1-
4.2) and then goes on to describe the extensions created for supporting metadata oriented
descriptions of resilience mechanisms, the Res-Ex ontology (Section 4.3).

4.1 RKB Technologies
The Resilience Knowledge Base is built on several key Semantic Web technologies. The
underlying data model is that of Resource Description Framework (RDF) [Klyne et al.,
2004], and we use the open source 3store repository [Harris et al., 2003] to provide large

34

scale storage and ontological inference while also facilitating query access over the
information held.

RDF allows knowledge to be expressed in ‘triples’ in the form (<subject>
<predicate> <object>). Each triple prescribes that some information resource or concept
(the subject) has a particular property or relationship, defined by the predicate, to another
given resource or value (the object). This structure is designed to permit formal logical
reasoning, and is a natural way to describe the vast majority of data processed by
computers. In RDF, the subject and object are each identified by a Universal Resource
Identifier (URI), just as used in a link on a Web page. The predicates are also identified
by URIs, enabling anyone to define a new concept or relation by defining a URI for it
somewhere on the Web.

Ontology languages, such the Web Ontology Language (OWL) [Patel-Schneider et
al., 2004], permit the description of ‘vocabularies’ defining further structure for
information represented in RDF documents. Resources can be identified as instances of
typed classes, which identify a particular concept and prescribe the properties (predicates)
expected of instances of that class. In addition, metadata can be defined prescribing the
manner in which properties and classes are intended to be used within the RDF data,
indicating the valid range and domain of a property or the data type in the case of literal
values. Sub-class relationships can be defined for classes and predicates, forming
hierarchical structures, and support is provided for grouping resources and values
together.

Other useful capabilities often include notions of ‘same-as’ and ‘distinct-from’,
enabling concepts in different ontologies to be mapped together - an important
advancement for creating a unified, interoperable information resource. These facilities
allow OWL ontologies to make use of and extend parts of other OWL ontologies, in
addition to mapping between common concepts and instances. This makes data expressed
in an ontologically mediated manner both reusable and repurposeable by computer
programs.

4.2 RKB Content
Within the RKB, there are in excess of 50 million RDF triples, corresponding to several
ontologies:

• The Advanced Knowledge Technologies (AKT) ontology details concepts
from within the academic domain, in particular details of people, projects,
papers and organisations.

• The ReSIST Ontology, based on the “ALRL” taxonomy [Avizienis et al.,
2004], covers concepts within the fields of research in resilient, survivable
and dependable systems.

• The ReSIST Courseware Ontology represents the various educational
courses and resources within the ReSIST project.

• The ACM Classification Ontology describes the ACM Computing
Classification System for categorising papers.

35

• The ReSIST Resilience Mechanisms (Res-Ex) Ontology represents
metadata-oriented descriptions of resilience mechanisms. See Section 4.3
for more details.

All of the above ontologies are available online at http://resist.ecs.soton.ac.uk/ontologies/.

Wherever possible ontological concepts are integrated and reused, for example the
use of various AKT classes such as Person and Publication within the Courseware and
Res-Ex ontologies. Furthermore, within the RKB, an ontological mapping between ACM
categories and concepts from the ReSIST Ontology is provided to aid data reuse and
interoperation.

4.3 Res-Ex Ontology
The Res-Ex interface to the RKB, described in Section 3, provides a method for entering
data into the underlying Res-Ex ontology and is designed in such a way that the
technicalities of this ontology are invisible to the user. It is nevertheless important that
such an ontology exists. The ontology, written in OWL, defines the semantics of and
relationships between resilience-related concepts. If all of the mechanisms are described
in a standard way with respect to the ontology, meaningful comparisons can be made
between mechanisms as the semantics of such descriptions will be well defined.
Describing mechanisms against a standard ontology also allows machine interpretation
and manipulation of the metadata. This is very important for dynamic reconfiguration, a
target application of the resilience-explicit computing approach, where decisions
governing selection and configuration of mechanisms may be, at least in part, automated.

When designing the Res-Ex interface and ontology, it was important to take into
account the purpose it needed to fulfil. Several open “brainstorming” sessions were held
during the ontology design process to consider the competency questions that the
ontology should support. A list of competency questions derived from these sessions can
be found in Appendix C.

The questions to be answered about resilience mechanisms were drafted and reviewed
prior to implementing the Res-Ex interface and designing the underlying ontology.
Version 1 of the questionnaire was trialled in the first Res-Ex workshop, when initial
attempts were made to describe resilience mechanisms. Using feedback from this
experience, the questionnaire was reviewed and version 2 of the questionnaire was
created. Both versions 1 and 2 of the questionnaire are available on the ReSIST wiki.
The questions found in the current version of the Res-Ex interface are very closely related
to version 2 of the questionnaire.

When designing the questionnaire and ontology, some insight was taken from other
ontologies and similar approaches such as: software design patterns [Coplien et al.,
1995]; dependability and security patterns from the SERENITY project5; the AKT
ontologies6; the ReSIST ontologies7 and courseware interface8.

5 http://www.serenity-project.org/
6 http://www.aktors.org/ontology/portal
7 http://resist.ecs.soton.ac.uk/ontologies/
8 http://resist.ecs.soton.ac.uk/courseware/

36

The full Res-Ex ontology is written in the web ontology language OWL and can be
found at http://resist.ecs.soton.ac.uk/ontologies/resilience-mechanisms.owl. In this
report, we just describe the essence of it and how it fits in with the existing RKB and
Res-On ontology. The main class in the ontology is Resilience Mechanism, “a
mechanism designed to improve the resilience of a computer based system”. There are
numerous properties that are defined for the Resilience Mechanism class, some of them
are DataType properties (associate textual or numerical data with an instance of the
Resilience Mechanism class) and some are Object properties (associate instances of other
classes with an instance of this class). Such properties include for example: mechanism-
objectives, a DataType property which associates a Resilience Mechanism with a string of
text summarising the objectives of the mechanism; and has-related-mechanism, an
Object property which relates two distinct, but related in some way, instances of
Resilience Mechanism. Whilst the Resilience Mechanism class is the main class in the
Res-Ex ontology, there are also some other classes defined in the ontology, such as
Knowledge, “a body of knowledge” and Resilience Metadata, “a piece of resilience
metadata about a mechanism”. Properties are also defined for some of these other
classes.

The Res-Ex ontology makes use of existing concepts, properties and instances in the
RKB wherever possible, in fact the main class, Resilience Mechanism, is a sub class of
the AKT Technology class. As such, all of the AKT Technology properties are inherited
by the Resilience Mechanism class, for example has-author, which relates a piece of
technology to a person that was involved in the creation of it. The Res-Ex ontology also
uses the AKT classes for people, publications, projects and technologies as the object of
Resilience Mechanism properties such as has-associated-project. This means, for
example, that when a user wishes to associate a project with their mechanism, he/she can
select any of the projects already in the RKB, which includes all of the CORDIS9 data on
past and current projects. The Res-Ex ontology is also integrated with the ReSIST
ontologies. The ACM classification ontology is used to provide a list of application
domains with which mechanisms can be associated. The ReSIST ontology on resilient,
survivable and dependable systems is used to describe research interests and threats
addressed by a Resilience Mechanism as well as to classify the failure modes of them.

All of the questions on the main form in the Res-Ex interface relate to properties of
the Resilience Mechanism class (with some of these properties being inherited from the
AKT Technology class). For example the mechanism-objectives property relates to the
“Mechanism Objectives” question found in the ‘overview’ section of the interface (see
Section 3.3.1) and the has-related-mechanism property relates to the “Related Resilience
Mechanisms” question in the ‘further details’ section of the interface (see Section 3.3.3).

The properties of the other classes in the Res-Ex ontology, such as the Knowledge
and Resilience Metadata classes mentioned earlier, relate to questions found in the sub
forms for adding new instances of these classes. For example, the Resilience Metadata
class has a property has-unit, which relates to the “Units” question in the resilience
metadata sub form (see Section 3.3.5).

9 http://cordis.europa.eu/en/home.html

37

In the future, we would like to extend the Res-Ex ontology to formally define
relationships between the metadata metrics with the intention of promoting comparison
between mechanisms. At this early stage, it is hard to anticipate the metrics that may
need to be included in this ontology. Thus, we are taking a bottom-up approach and
allowing the users to define the metrics that they require as they need them. Once a
reasonable number of metrics have been entered into the interface, we can investigate the
relationships between them and develop ontologies to represent such relationships.

5 Related Work
Our work on support for resilience-explicit computing has concentrated on providing a
means of recording metadata-based descriptions of resilience mechanisms with the
intention that the descriptions can be used to assist in the selection and configuration of
mechanisms at design-time and run-time. Looking forward to run-time exploitation of
metadata, there are several technologies supporting dynamic selection of components and
services. In this section, we identify relevant existing work and place Res-Ex computing
in this context, particularly noting those technologies in which metadata already plays a
role. We see these as technologies that may be able to utilise metadata-oriented
descriptions of resilience mechanisms.

5.1 Multi-Agent Systems
Matchmaking is the process of identifying a suitable service provider for a service
requester using a middle agent. Providers of services advertise their service to middle
agents (which store them), requesters of services address their requests to middle agents
which then match the requests against the stored advertised services. Different
matchmaking techniques exist based on different query and deductive languages. We can
cite the Agent-Based Software Integration (ABSI) facilitator, one of the earliest
matchmakers [Genesereth et al., 1993], where capabilities are described through the
Knowledge Query Manipulation Language (KQML) and Knowledge Interchange Format
(KIF). InfoSleuth [Bayardo et al., 1997] makes uses of a common ontology for
dynamically matching service requests to available resources. Larks [Sycara et al., 1999]
is an agent capability description language supporting specification of context, type, I/O
variables and constraints, and ontological descriptions of some terms in the specification.
Larks specifically addresses matchmaking among heterogeneous agents. Besides work
based on service specification, we can mention [Luan 2004] in which, in addition to the
specification and domain ontology, a history of interactions with the agents is maintained
in order to enhance run-time matching. Candidate services are first selected through
semantic service description matching. In a second step, the performance rating of each
candidate (based on the history of interactions) with respect to the specific request is
estimated in order to determine the best candidate.

Matchmaking allows run-time selection of a service provider based on the description
of its service, and possibly on additional non-functional criteria such as performance
rating. The Res-Ex approach clearly leverages matchmaking, since dynamic function
allocation, or re-configuration at run-time is similar to matchmaking based on resilience
metadata. Res-Ex computing goes also much further than that, since the use of metadata

38

not only covers functional aspects, but also a large range of non-functional criteria, and
the scope of resiliency is not limited to re-configuration or dynamic selection of services,
but may encompass classic fault-tolerance, backward recovery, granting of resources at
run-time, or cooperative backup.

5.2 Web Services
The Universal Description, Discovery and Integration (UDDI) registry concept provides
a potential service integration capability in Web services. However, UDDI currently
lacks sufficient metadata to describe service capability and relationships, inevitably
making it difficult to discover the most appropriate service. Some current research [Zhou
et al., 2005] is aimed at developing enhanced UDDI to discover services or their
relationships dynamically by adding new metadata. Ontology-driven knowledge
organisation could also provide benefits to current UDDI [Oh et al., 2005]. Semantic
service discovery approaches aiming to improve precision in the search phase have also
been presented [Canfora et al., 2005]. The semantic description of a service represents
the functional aspects of the service expressed in a logical language and by means of
formal ontologies. In [Arpinar et al., 2004], a collection of ontology-driven Web Services
composition techniques are presented for discovering and assembling individual Web
Services into more complex processes. Moreover, Quality of Service (QoS) is a key
factor in Web Services and the Web Services composition itself can be adapted mainly
because of QoS requirements at run-time.

Research on Web Services QoS-based selection and composition could benefit from
Res-Ex work because, for example, the use of metadata based descriptions of resilience
mechanisms could allow resilience mechanism selection at run-time to satisfy reliability
and availability QoS parameters.

5.3 GRID computing
Computational grids are infrastructures that provide access to shared computing resources
for a great number of users involved in large-scale collaborations. In the LHC
Computing Grid (LCG) and Enabling Grid for E-sciencE (EGEE) projects, the Grid
Laboratory Uniform Environment (GLUE) schema defines a common conceptual data
model for Grid resource discovery and monitoring [Delgado Paris et al., 2005].

There are neither protocols nor standards in the Grid community for dealing with
ontologies [Gutiérrez et al., 2007]. However, ontologies can be used in Grid for several
purposes: for describing policies and sharing information, services and computing
resources in virtual organization, and for describing formal and informal properties of
Grid resources and services. The OntoGrid project10 aims at developing a reference
Semantic Open Grid Service Architecture (S-OGSA) for the development of distributed
applications that need to use explicit and distributed metadata. The Web Services Data
Access and Integration Ontology realisation (WS-DAIOnt) defines the data access
services that are needed for dealing with ontologies in Grid environments [Gutiérrez et
al., 2006]. [Corcho et al., 2007] describes the approach for metadata management
proposed in the context of the S-OGSA. [Kaoudi et al., 2007] analyses the problem of

10 www.ontogrid.net

39

resource discovery in the Semantic Grid, showing how to solve this by utilizing Atlas, a
P2P system for the distributed storage and retrieval of RDF(S) data. Atlas is being used to
realise the metadata service of S-OGSA in a fully distributed and scalable way.

Grid computing encompasses resource discovery and resource allocations at run-time;
it covers issues related to semantics and performance. It is an ideal application area for
resilience-explicit computing. Techniques such as S-OGSA explicitly use metadata at
run-time and propose a middleware architecture supporting metadata to be displayed, and
shared among the different Grid entities. Focus is given on service provisioning and
access control. Research on building reliable and high available GRID services could
benefit from Res-Ex work: for example, metadata based descriptions of resilience
mechanisms could allow strategies for enhancing reliability of services in S-OGSA.

5.4 Dynamic reconfiguration

Run-time reconfiguration of services has been reported in Wapee [Kim et al., 2006], a
specific middleware that supports dynamic reconfiguration in case of detected faults. A
dedicated Fault-Manager detects faults and a Run-time Service Manager triggers
reconfiguration once faults have been detected. A Monitoring Service provides real-time
monitoring and feedback status of jobs submitted to services. The detection of faults and
the choice of the replacement component are based on formal description of faults, of
functionality of services and of context information (resource requirements). Three
ontologies are defined: fault ontology for types of faults and their causes; service
ontology for functionality and resource requirements of services; and recovery strategy
ontology for fault resolution.

In the field of autonomic computing, a uniform representation and composition of
autonomic elements has been proposed [White et al., 2004], encompassing the use of a
service-oriented architecture supporting the interactions of these elements, preliminary
design patterns and policies. Accord [Liu et al., 2004] is a programming framework for
autonomic applications, supporting the use of rules to control the behaviour and
interaction of autonomic components. Dynamic addition, deletion and replacement of
components are supported, as well as changes to interactions. Self-Managed Cells (SMC)
[Dulay et al., 2005] consist of (heterogeneous) hardware and software elements and
management services integrated through a common publish/subscribe event bus.
Managed components are monitored and decisions and actions are taken on the basis of
provided policies. SMC elements have well-defined expected interfaces, limiting the
possibility for new elements to join the system, especially if they have not been designed
by the same team. The SMC scheme does not specifically address the use of metadata,
even though elements are monitored, which nevertheless implies that metadata is
collected about their behaviour.

Dynamic reconfiguration of services tends to achieve goals similar to those of
resilience-explicit computing at run-time. The use of metadata is not always “explicit” in
the different approaches, but the use of metadata is present, since monitoring of a
component implies checking some specific behaviour/performance/quality of service, etc.
The above techniques focus on run-time architectures and middleware. Design-time
issues are not yet primarily considered. The Res-Ex approach clearly encompasses
dynamic reconfiguration of services and autonomic computing aspects in general. Res-

40

Ex computing intends to have a larger scope: it covers not only run-time activities related
to resilience in the large (not only limited to reconfigurations), but also design-time
activities by supporting the choice of resilience techniques at design-time.

5.5 Component-Based Software: selecting components
A design-time automated process for selecting, evaluating and testing third party
components is presented in [Maxville et al., 2003] based on both metadata and formal
specification of the required component (interface and behaviour) and of its context of
use. Metadata capture context information and specific criteria of the desired component.
The specification is used first to select the possible components on the basis of their
expected functionality, and second to derive tests for evaluating the selected components
in the targeted environment. This process leads to a ranking of short-listed components
according to criteria such as performance, security, or ease of integration. The Z language
is used for the specifications. The specification and the metadata are captured with XML.
The above selection process has further been extended with AI techniques for classifying
components in order to take into account interdependent criteria [Maxville et al., 2004].

This technique allows selection at design-time of the appropriate component. The
main criterion is functionality; the use of the tests allows further identification of the
components on the basis of additional non-functional criteria (e.g., performance). This
type of work is completely in line with the resilience-explicit approach which allows both
design-time and run-time use of metadata in order to ensure adequate choice of the right
component. Even though the resilience-explicit computing approach is suited for
configuration at design-time, and re-configuration at run-time by selecting components or
services, it also goes further by supporting the use of metadata in order to define
resilience strategies (different from re-configuration strategies).

6 Evaluation and Future Work
As indicated in Section 1, the goal of work on Res-Ex computing in ReSIST is to
encourage the community to gather metadata-based descriptions of resilience
mechanisms that can assist design-time and run-time decision-making. Our approach in
the initial phase of work has been to capture a broad set of first edition mechanism
descriptions by means of a prototype interface to the RKB. We have described these
developments in Sections 2, 3 and 4 above. In Section 2, we have also included the main
observations of the mechanism providers on the description process and interface.

All of the mechanisms originally offered were successfully recorded. Several
contributors noted that metadata-based description encouraged them to make a careful
examination of the mechanism proposed, including analytic evaluation (in the case of
cooperative backup, Section 2.1) and careful thought about the failure modes of the
mechanism itself (stochastic dependability evaluation tool and NVP, Sections 2.9, 2.10).
It is also worth noting that the approach exposes limitations of the discourse surrounding
certain mechanisms (e.g., supervisory systems, Section 2.6).

The breadth of the range of mechanisms included in the first edition led to a variety of
challenges addressed by the contributors as they exercised the interface, RKB and

41

ontology. Several limitations were observed in the existing interface, metadata and
ontology descriptions and these are discussed below. A common theme has been the need
to be clear about the scope of the mechanism under consideration. This was identified as
an issue for the ModelWorks tool (Section 2.3), dynamic function allocation (Section
2.5), NVP, Recovery blocks and N-self-checking programming (Sections 2.10-2.12). The
issue is addressed in current guidance to users, and the existence of the first edition
mechanism descriptions is itself a considerable help in encouraging and guiding new
descriptions.

Future work will be in two strands. First, we will begin to address the exploitation of
the mechanism and metadata descriptions already recorded, by encouraging the
development of challenge problems that show how a Res-Ex approach may be realised
(Section 6.1). Second, we will extend the collection of mechanism descriptions (Section
6.2), and improve the descriptions already recorded, as well as maintaining and
improving the facilities for mechanism entry and viewing (Sections 6.3 and 6.4).

6.1 Exploitation of Metadata and Mechanisms
One of the goals of work on Res-Ex computing is to provide techniques and tools for
constructing systems that may reconfigure predictably in response to impairments. In
Section 5, we have identified several areas of current research, which suggest that it is
possible to apply Res-Ex computing principles to develop systems that achieve
predictable dynamic resilience through run-time adaptation. Achieving such resilience
requires that reconfiguration is triggered by trustworthy metadata and governed by
resilience policies that are well understood.

A Res-Ex system that exploits metadata at run-time requires the following elements
in addition to resilience mechanisms:

 Trustworthy resilience metadata conveying functional information (e.g.
pre/postconditions, represented by logical formulae or informal descriptions) and
non-functional information (e.g. availability, represented by structured values)
relevant to resilience. Metadata should be semantically interoperable. For example, in
selecting an alternative component for a fault-tolerant assembly such as NVP (Section
2.10), it is important that the metadata for each component, such as probabilities of
failure on demand, are known to refer to the same concept. Given semantic
interoperability, analysis tools can compare components.

 Policies governing resilience: The architect must be able to define application-
specific resilience policies that implement resilience mechanisms. Policies should be
capable of being analysed, again formally, in advance of deployment in order to
confirm that they will achieve the resilience properties required by the application.
This in turn implies that the system architecture and the resilience policy have to be
expressed sufficiently formally to give confidence in the outcome of analyses about
whether a particular adaptation is viable. Policies might be implemented as controller
programs that reconfigure application architectures in response to impairments
(faults, detected threats, reduction in quality of service). For example, a policy might
replace a component when its measured reliability metadata (based on probability of
failure on demand) is observed to have fallen below a threshold level, or deteriorating
in excess of a prescribed rate. Here the implementation of the policy must be able to

42

access the relevant metadata and perform a programmed comparison in order to
trigger a reconfiguration. The search for a suitable substitute might include machine-
assisted reasoning over the potential replacement’s logical preconditions in order to
ensure that it may be used safely in the reconfigured application.

 Reasoning and adaptation services: Architectures supporting dynamic resilience
must include computation, reasoning and adaptation services that are strong enough
to reason over the metadata needed to implement the adaptation policies. These must
be backed up with other services to perform component searches and enact adaptation
with minimal disruption as described by the resilience policy. In the scenario, these
services are used for selecting and adapting components without compromising
continuity of service.

As an example of the exploitation of metadata, Figure 13 [Di Marzo Serugendo et al.,
2007] shows the elements of a run-time environment supporting a Res-Ex approach. In
the example application (a GPS system), metadata on component availability (shown as a
simple number for the sake of brevity) are maintained in a registry of “known”
components. The decision to replace a component is governed by a comparison against
availability metadata in the resilience policy program. The suitability of a replacement
depends on its availability metadata and a simple functional description.

Figure 13: Run-time environment supporting dynamic resilience [Di Marzo Serugendo et al., 2007]

While there is ongoing research in each of the areas needed to realise a Res-Ex approach,
there is need for advances of these along with their successful integration. In the next
stage of ReSIST work on Res-Ex computing, we aim to develop a series of challenge
problems identifying applications that require the run-time use of metadata to support
dynamic reconfiguration for resilience. The development of the challenge problems is
expected to deliver insight into the need for and role of metadata. Together, the problems
will constitute a driver by which we hope to advance and integrate research.

43

By the end of the ReSIST project period, we will aim to have developed about three
challenge problems. We aim to do this in collaboration with the Grand Challenges in
Computing effort (http://www.ukcrc.org.uk/grand_challenges/current/index.cfm),
especially GC6 on dependable systems evolution and GC2/4 on ubiquitous computing,
both of which have developed strong international contributor bases. The challenge
problems will serve as benchmarks for researchers and developers of tools supporting the
design process or providing dynamic reconfiguration capabilities. Each will be based on
an application (e.g., in transport, network communications or distributed control) and will
invite contributors to develop and validate policies for dynamic resilience based on
metadata. We expect the solutions proposed by contributors to include metadata-based
descriptions of the resilience mechanisms deployed.

6.2 Second Edition Mechanisms
Work is planned to characterise further resilience mechanisms and so help explore the
potential for Res-Ex outlined above. Below, we discuss the need for a second edition of
resilience mechanisms, and then propose particular mechanisms.

6.2.1 Need for a Second Edition

It was not a goal of the first edition to be fully comprehensive. Our second edition
content will aim to address gaps in the coverage provided by the sample of mechanisms
described so far. We approach the identification of candidate second edition mechanisms
in two ways. First by highlighting gaps in terms of the key characteristics in Table 1
(Section 2.13); and second by identifying resilience mechanisms familiar to participants
in ReSIST.

ReSIST Partners. Given that the development of the RKB extensions and interface was
a specialised task, the first edition mechanisms were contributed by members of the Res-
Ex SIG: Newcastle (6 mechanisms), LAAS (1 mechanism), BUTE (3 mechanisms),
QinetiQ (1 mechanism) and a ReSIST affiliate researcher (1 mechanism). In addition,
there was active involvement via discussions and reviews from other partners. It is now
desirable to obtain mechanism descriptions from a broader group, not least because this
will expose the ontology and entry interface to users not directly involved in their
development.

Mechanism Types. There are four tools/processes, and the remaining eight mechanisms
are architectural. Three mechanisms are applicable at design/development time, and the
remaining nine at run time. The described mechanisms apply to/within a wide variety of
types of system, and can deliver a wide variety of direct benefits.

Coverage of Resilience Building and Scaling Technologies. There is a fairly good
spread of mechanisms across the five original Resilience Building Technology areas
identified with working groups in the ReSIST network. Most mechanisms are most
closely associated with Algorithms and Architectures, two with Verification, one with
Evaluation, and one with Socio-Technical. The coverage of Resilience Scaling
Technologies is less broad: one is most closely associated with Evolvability, seven with
Assessability, five with Diversity, and none with Usability.

44

6.2.2 Potential Second Edition Mechanisms
The following potential second edition mechanisms listed below have been identified as
potential targets for description. They have been identified largely for pragmatic reasons,
based on the knowledge of ReSIST partners evident in deliverables D12 Resilience-
Building Technologies: State of Knowledge and D13 From Resilience Building to
Resilience Scaling: Directions.

The following mechanisms were identified by detailed consideration of the research
gaps and challenges identified in D13, focusing most on the ‘Current Approaches’
sections of each gap. This approach had varying degrees of success in terms of the
numbers of potential second edition mechanisms found, most evidently in the relatively
few Usability-related mechanisms. On the other hand, most of the identified mechanisms
relate to Evolvability, to which, after Usability, the fewest first edition mechanisms
relate.

In the listing below, we name the target mechanism and give the reference of the gap
or challenge in D13.

Mechanisms relating to Evolvability:

Potential Mechanism Gap/Challenge
Dynamic Coalitions (technique or modelling) FE1: Evolution of Threats
Ad hoc routing in resilient ambient systems FE2: Resilient Ambient Systems
DECOS modelling technique FE3: Distributed System Models
SysML-based modelling FE3: Distributed System Models
Intrusion tolerant middleware FE4: Trustworthiness/Intrusion Tolerance in

WANs
Intrusion tolerant architecture FE4: Trustworthiness/Intrusion Tolerance in

WANs
State machine replication FE4: Trustworthiness/Intrusion Tolerance in

WANs
Byzantine quorum systems FE4: Trustworthiness/Intrusion Tolerance in

WANs
Data protection (RAID/mirroring/replication/..) FE5: Resilient Data Storage
Open component technology (OpenCom/Fractal) FE7: Design for Adaptation: Framework and

Programming Paradigms
Ad hoc wireless middleware (HIDENETS) FE8: Adaptation
Virtualisation for dependable systems FE11: Virtualisation

Mechanisms relating to Diversity:

Potential Mechanism Gap/Challenge
Diversity against accidental and deliberate faults FD1: Diversity for security,

FD2: Large-scale Diversity for Intrusion
Tolerance

Diversity and redundancy in security FD1: Diversity for security,
FD2: Large-scale Diversity for Intrusion
Tolerance

Harmonizing diverse components by wrapping FD3: Interoperability for Diversity

Mechanisms relating to Usability:

Potential Mechanism Gap/Challenge

45

User-Centered Design FU2: UCD & resilience engineering and
development processes

Mechanisms relating to Assessability:

Potential Mechanism Gap/Challenge
Testing of Distributed Mobile Systems FA11: Verification/Testing of Mobile

Computing Systems
Assume Guarantee Reasoning FA14: Compositional Reasoning
Technique for Human Error Rate Prediction
(THERP)

FA17: Modelling Human Behavior

Human Reliability Analysis FA17: Modelling Human Behavior

Finally, the following potential second edition mechanisms were identified by
considering D12. Particular focus was placed on the Socio-Technical and Verification
parts, to counter the relatively small number of Usability (most closely related to Socio-
Technical) and Assessability mechanisms listed above.

Mechanisms relating to D12 Socio-Technical:

Potential Mechanism D12 Section
Cause-consequence analysis Socio 2: Evaluation and verification issues

in resilience in socio-technical
systems

Human HAZOP / THEA / TRACEr / Why
Because Analysis

Socio 2: Evaluation and verification issues
in resilience in socio-technical
systems

Barrier based design of Interactive Systems Socio 1: Understanding the structure and
organisation of socio-technical
systems: representation and modelling

IFADIS: Analysis of Dependable Interactive
Systems

Socio 1: Understanding the structure and
organisation of socio-technical systems:
representation and modelling

Modelling Ambient and Mobile Systems Socio 2: Evaluation and verification issues
in resilience in socio-technical
systems

Mechanisms relating to D12 Verification:

Potential Mechanism D12 Section
TTP/C Bus Protocol Verif 1: Deductive Theorem Proving
Abstract Interpretation Verif 3: Symbolic Execution and Abstract

Interpretation
Deductive Reasoning (theorem proving) Verif 1: Deductive Theorem Proving

6.3 Entry Interface
The prototype Res-Ex interface was used successfully for the first edition resilience
mechanisms. Issues raised during the study have been collected and recorded for
addressing in future versions. These include the need to give the free mechanism
description at an early stage (dynamic function allocation, Section 2.5).

Of the potential improvements identified in this first phase of use, several have
already been implemented in a new version of the interface that is currently in

46

preparation. These include improved navigation to specific pages of the mechanism
editing form and several layout enhancements. Some of the identified problems that have
been resolved in the new interface relate to the use of browsers other than Firefox 2+ and
errors in updating metadata descriptions following edit.

6.4 RKB Explorer Interface and Res-Ex Ontology
A prototype web-based interface has been developed to allow users to navigate the large
quantities of information stored within the RKB. It is freely available for public use at
http://resist.ecs.soton.ac.uk/explorer/ and is shown in Figure 14.

Figure 14: The Explorer interface to the RKB

Users may currently use this interface to search and browse through the data available
based around the four themes of People, Research Topics, Publications and Projects. At
any time, the top half of the interface window details an instance of one of these types of
resource, while the lower half lists those resources of each type which are related to the
currently selected item as determined automatically through semantic analyses.

Given the inclusion of semantic metadata detailing resilience-explicit computing
mechanisms within the RKB, it is envisaged that a future release of the Explorer interface
would present details and facilitate opportunistic discovery of these technologies. The
Explorer would not only enable different mechanisms to be viewed as the focus of the

47

display, while showing other related mechanisms and associated papers, researchers,
projects, and interest areas, but also, conversely, to highlight the relevance of these
mechanisms while users are browsing other types of resource.

The Res-Ex ontology that underpins the RKB extensions to handle mechanism
description (Section 4.3) proved adequate for describing the first edition mechanisms and
this was achieved with considerable re-use of concepts from the AKT and ReSIST
ontologies. In order to support decision-making, we would like to strengthen the Res-Ex
ontology to handle relationships between metadata metrics and inheritance of metadata as
suggested in the cases of consensus mechanisms (Section 2.2) and dynamic function
allocation (Section 2.5). However, more metric and mechanism descriptions should be
gathered to ensure that this is properly addressed. Concepts strong enough to handle
descriptions of security and cryptography mechanisms are required as suggested by the
re-encryption mixes mechanism (Section 2.4) and this is being addressed in the
Resilience Ontology work within ReSIST.

6.5 Concluding Remarks
The description of resilience mechanisms is challenging but beneficial. Contributors have
been forced to answer difficult questions about their mechanisms, in characterising as
precisely as possible the effects that they have on overall system resilience. This
challenge is perceived as one of the benefits of the approach, but it does suggest that
gathering metadata-oriented descriptions will continue to require a high level of
interaction between the maintainers of the knowledge base and the mechanism
contributors. Bearing this in mind, we plan to continue to improve and update the RKB
and Res-Ex interfaces.

We have concentrated so far on acquiring and recording mechanism descriptions, and
not on their exploitation. Our proposed next phase of work aims to encourage the use of
mechanism descriptions (via development of engaging challenge problems in metadata-
based reconfiguration for resilience, inspired by some of the potential application
technologies discussed in Section 5) and to encourage further contributions to the RKB as
well as to its content. We will seek contributions from a wider range of researchers in
ReSIST but, equally importantly, from beyond the network.

48

References
[Arpinar et al., 2004] I.B. Arpinar, B. Aleman-Meza, R. Zhang, A. Maduko, Ontology-
Driven Web Services Composition Platform, Proceedings of the 2004 IEEE International
Conference on E-Commerce Technology (CEC 2004), pp. 146-152, 2004.

[Avizienis 1985] A. Avizienis, The N-Version Approach to Fault-Tolerant Systems,
IEEE Trans. on Software Engineering, Vol. SE- 11, No. 12, Dec. 1985, pp. 1491-1501.

[Avizienis et al., 2004] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic
Concepts and Taxonomy of Dependable and Secure Computing, IEEE Transactions on
Dependable and Secure Computing, Vol. 1, No. 1, pp. 11-33, January 2004.

[Bayardo et al., 1997] R. J. Bayardo et al., The InfoSleuth Project, Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data, 1997.

[Cachin et al., 2000] C. Cachin, K. Kursawe, V. Shoup, Random oracles in
Constantinople: practical asynchronous Byzantine agreement using cryptography,
Proceedings of the 19th Annual Symposium on Principles of Distributed Computing,
Portland, Oregon, July 2000. ACM.

[Canfora et al., 2005] G. Canfora, P. Corte, A. De Nigro, D. Desideri, M. Di Penta, R.
Esposito, A. Falanga, G. Renna, R. Scognamiglio, F. Torelli, M. L. Villani, P.
Zampognaro, The C-Cube Framework: Developing Autonomic Applications through
Web Services, Proceedings of the Workshop on Design and Evolution of Autonomic
Application Software (DEAS 2005), St. Louis, Missouri, ACM SIGSOFT SE-Notes, Vol.
30, No. 4, 2005.

[Castro et al., 1999] M. Castro, and B. Liskov, Practical Byzantine fault tolerance,
Proceedings of the Third Symposium on Operating Systems Design and Implementation,
New Orleans, Louisiana, USENIX Association, Berkeley, CA, pp. 173-186, 1999.

[Coplien et al., 1995] J. O. Coplien, D. C. Schmidt (Eds.), Pattern Languages of Program
Design, Addison-Wesley, Reading, MA, 1995.

[Corcho et al., 2007] O. Corcho, P. Alper, P. Missier, S. Bechhofer, C. Goble, W. Xing.
Metadata Management in S-OGSA, Proceedings of International Workshop on Collective
Intelligence for Semantic and Knowledge Grid (CISKGrid 2007).

[Courtes et al., 2006] L. Courtes, M.-O. Killijian, D. Powell, Storage Tradeoffs in a
Collaborative Backup Service for Mobile Devices, Dependable Computing Conference,
2006. EDCC ‘06. Sixth European , vol., no., pp.129-138, Oct. 2006.

[Courtès et al., 2007] "Dependability Evaluation of Cooperative Backup Strategies Edit
resource", Ludovic Courtès, Ossama Hamouda, Mohamed Kaâniche, Marc- Olivier
Killijian, David Powell to appear in Procs of the 13th IEEE Pacific Rim International

49

Symposium on Dependable Computing (PRDC’07), Melbourne, Victoria, Australia
December 17-19, 2007

[Dearden et al., 2000] Dearden, A., Harrison, M.D., Wright, P.C., Allocation of Function:
Scenarios, Context and the Economics of Effort, International Journal of Human-
Computer Studies, Vol. 52, No. 2, pp. 289-318, 2000.

[Delgado Paris et al., 2005] A. Delgado Paris, P. Mendez Lorenzo, F. Donno, A. Sciaba,
S. Campana, R. Santinelli, LCG-2 User Guide, CERN-LCG-GDEIS-454439, 2005.

[Di Marzo Serugendo et al., 2007] G. Di Marzo Serugendo, J. S. Fitzgerald, A.
Romanovsky, N. Guelfi, A Metadata-based Architectural Model for Dynamically
Resilient Systems, in Proc. 2007 ACM Symposium on Applied Computing, Seoul, Korea,
March 2007. ACM Press.

[Dulay et al., 2005] N. Dulay, E. Lupu, M. Sloman, J. Sventek, N. Badr, S. Heeps, Self-
Managed Cells for Ubiquitous Systems, Proceedings of the Third International Workshop
on Mathematical Methods, Models, and Architectures for Computer Network Security
(MMM-ACNS 2005), St. Petersburg, Russia, September 25-27, 2005, Vol. 3685 of
Lecture Notes in Computer Science, pp. 1-6. Springer, 2005.

[Genesereth et al., 1993] M. R. Genesereth and N. P. Singh, A Knowledge Sharing
Approach to Software Interoperation, Stanford Logic Group Report Logic-93-12.

[Gutiérrez et al., 2006] M. Gutiérrez, A. Gómez-Pérez, Ó. Muñoz García, Ontology
Access in Grids with WS-DAIOnt and the RDF(S) Realization, Semantic Grid
Workshop, GGF16, Athens, 15th Feb 2006.

[Gutiérrez et al., 2007] M. Gutiérrez, A. Gómez-Pérez, Ideas for the Provision of
Ontology Access in Grid Environments, Knowledge and Data Management in GRIDs, in
D. Talia, A. Bilas, M. Dikaiakos (Eds.), CoreGRID Series, Springer US, 2007.

[Harris et al., 2003] S. Harris and N. Gibbins, 3Store: Efficient Bulk RDF Storage,
Proceedings of the 1st International Workshop on Practical and Scalable Semantic
Systems, pp. 1-15, 2003.

[Horning et al., 1974] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, B. Randell, A
Program Structure for Error Detection and Recovery, Proceedings of the International
Symposium on Operating Systems: Theoretical and Practical Aspects, Rocquencourt,
France, 23-25 April 1974, Gelenbe, E., Kaiser, C. (Eds.), Lecture Notes in Computer
Science Vol. 16, pp. 171-187, Springer-Verlag 1974.

[IBM 2006] An architectural blueprint for autonomic computing. White paper. IBM.
2006. http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf.

50

[Inayat et al., 2006] P. D. Ezhilchelvan, Q.-A. Inayat, A Performance Study on the
Signal-On-Fail Approach to Imposing Total Order in the Streets of Byzantium,
International Conference on Dependable Systems and Networks, 2006 (DSN 2006), pp.
578–590, 2006.

[Kaoudi et al., 2007] Z. Kaoudi, I. Miliaraki, M. Magiridou, E. Liarou, S. Idreos, M.
Koubarakis, Semantic Grid Resource Discovery in Atlas, in D. Talia, A. Bilas, M.
Dikaiakos (Eds.), Knowledge and Data Management in GRIDs, CoreGRID Series,
Springer US, 2007.

[Kim et al., 2006] Y. Kim, E. Kim, J. Kim, E. Song, I. Ko, Ontology Based Software
Reconfiguration in a Ubiquitous Computing Environment, Proceedings of the 6th IEEE
International Conference on Computer and Information Technology (CIT’06), 2006.

[Klyne et al., 2004] G. Klyne, J. J. Carroll, B. McBride, Resource Description
Framework (RDF): Concepts and Abstract Syntax, W3C Recommendation, 2004.
http://www.w3.org/TR/rdf-concepts/

[Knight et al., 1986] J. C. Knight and N. G. Leveson, An Empirical Study of Failure
Probabilities in Multi-version Software, Proceedings of the 16th IEEE International
Symp. Fault-Tolerant Computing, 1986, Computer Society Press, Los Alamitos,
California, Order No. 703, pp. 165-170.

[Laprie et al., 1990] J.C. Laprie, J. Arlat, C. Beounes, K. Kanoun, Definition and
Analysis of Hardware and Software Fault-Tolerant Architectures, IEEE Computer, Vol.
23, No. 7, July 1990, pp. 39-51.

[Liu et al., 2004] H. Liu, M. Parashar, S. Hariri, A Component-Based Programming
Model for Autonomic Applications, in J. Kephart, M. Parashar (Eds.), International
Conference on Autonomic Computing (ICAC’04), pp. 10-17, IEEE Computer Society,
2004.

[Luan 2004] X. Luan, Adaptive Middle Agent for Service Matching in the Semantic
Web: A Quantitative Approach, PhD Thesis, University of Maryland, 2004.

[Majzik et al., 2007] I. Majzik, P. Domokos, M. Magyar, Tool-supported Dependability
Evaluation of Redundant Architectures in Computer Based Control Systems, in E.
Schnieder, G. Tarnai (eds.), Proceedings FORMS/FORMAT 2007, the 6th Symposium
on Formal Methods for Automation and Safety in Railway and Automotive Systems, 25-
26 January 2007, Braunschweig, Germany, pp 342-352. GZVB, Braunschweig,
Germany, 2007.

[Maxville et al., 2003] V. Maxville, C. P. Lam, J. Armarego, Selecting Components: A
Process for Context-Driven Evaluation, Proceedings of the Tenth Asia-Pacific Software
Engineering Conference (APSEC’03), 2003.

51

[Maxville et al., 2004] V. Maxville, J. Armarego, C. P. Lam, Intelligent Component
Selection, Proceedings of the 28th Annual International Computer Software and
Applications Conference (COMPSAC’04), 2004.

[Micskei et al., 2006] Z. Micskei, I. Majzik, F. Tam, Robustness Testing Techniques For
High Availability Middleware Solutions, Proceedings of International Workshop on
Engineering of Fault Tolerant Systems (EFTS 2006), Luxembourg, Luxembourg, June
12-14, 2006.

[Oh et al., 2005] S.G. Oh, E.C. Lee, O. Park, M. Yi, Ontology-Driven Knowledge
Organization - Enhancing UDDI Web Services in Korea Using Topic Maps, Proceedings
of the American Society for Information Science & Technology, Charlotte, North
Carolina, October 28 - November 2, 2005

[Patel-Schneider et al., 2004] P.F. Patel-Schneider, P. Hayes, I. Horrocks, OWL Web
Ontology Language Semantics and Abstract Syntax, W3C Recommendation, 2004.
http://www.w3.org/TR/owl-semantics/

[Pease et al., 1980] M. Pease, R. Shostak, L. Lamport, Reaching Agreement in the
Presence of Faults, J. ACM, Vol. 27, No. 2, Apr. 1980, pp. 228-234.

[Ryan et al., 2006] P. Y. A. Ryan, S. A. Schneider, Pret a Voter with Re-encryption
Mixes, Technical Report Number CS-TR: 956, School of Computing Science, Newcastle
University, Apr 2006.

[Sycara et al., 1999] K. Sycara, J. Lu, M. Klusch, S. Widoff, Proceedings of the 1999
AAAI Spring Symposium on Intelligent Agents in Cyberspace, March, 1999.

[White et al., 2004] S. White, J. Hanson, I. Whalley, D. Chess, J. Kephart, An
Architectural Approach to Autonomic Computing, in J. Kephart, M. Parashar (Eds.),
International Conference on Autonomic Computing (ICAC’04), pp. 2-9, IEEE Computer
Society, 2004.

[Zhou et al., 2005] G. Zhou, J.J. Yu, Using Enhanced UDDI to Support Service Dynamic
Discovery, Proceedings of Communications, Internet, and Information Technology (CIIT
2005), Cambridge, USA, 2005

52

Appendix A: Res-Ex Case Study in Overview

A.1 Introduction

A designer requires a system that tolerates one (sequential) hardware fault and/or one
software fault. The designer has limited resources available and wishes to provide a cost
effective solution. However, the system must also be as reliable as possible.

The designer knows about three fault-tolerant architectures that would tolerate the
required faults:

• Recovery Blocks (RB/1/1)
• N-Version Programming (NVP/1/1)
• N-Self Checking Programming (NSCP/1/1)

The problem that was examined was which of these provided suitable cost and reliability
levels.

A.2 Decision Making with Metadata
The following metadata was identified for the fault-tolerant architectures from a paper by
Laprie and colleagues [Laprie et al., 1990]. In terms of costs and overheads the metadata
shown in Table 2 applies. Metadata detailing the reliability aspects of the fault-tolerant
architectures is given in Table 3.

Method Total
no. of
variants
required

Total no. of
hardware
components
required

Other
structural
overheads

Operational
time
overheads
(normal
operation)

Operational
time
overheads
(when
errors
occur)

Min
(CFT/
CNFT)

Max
(CFT/
CNFT)

Av
(CFT/
CNFT)

No Fault
Tolerance

1 1 None None N/A 1 1 1

RB/1/1 2 2 Acceptance
test.
Recovery
cache

Acceptance
test execution.
Accesses to
recovery cache

One variant
and
acceptance
test
execution

1.33 2.17 1.75

NVP/1/1 3 3 Voters Vote execution.
Input data
consistency
and variants
execution
synchronisation

Usually
negligible

1.78 2.71 2.25

NSCP/1/1 4 4 Comparators
and result
switching

Comparison
execution.
Input data
consistency
and variants
execution
synchronisation

Possible
result
switching

2.24 3.77 3.01

Table 2: Overheads and cost metadata of fault-tolerant architectures

53

P (Software failure on demand) (P (S)) =
P (Detected software failure on demand) +
P (Undetected software failure on demand)

Time dependent (approximation for
short missions wrt mtbf)

Method

P (Detected software
failure on demand)
(P (S, D))

P (Undetected
software failure on
demand)
(P (S, U))

Reliability P (undetected
failure)

RB/1/1 (P (I))2 + P (ID) + P (2V) P (RVD) 1- (2 * (1-c) * _H +
_S) * t

_S, U * t

NVP/1/1 3 * (P (I))2 [1 – (2/3) * P
(I)] + P (ID)

3 * P (2V) + P (3V) +
P (RVD)

1- _S * t _S, U * t

NSCP/1/1 4 * (P (I))2 * [1 – P (I) +
(P (I))2/4] + P (ID) + 4 * P
(2V)

P (2V) + 4 * P (3V) +
P (4V) + P (RVD)

1- _S * t _S, U * t

Table 3: Reliability metadata of fault-tolerant architectures

The variables used in Table 3 above are defined as follows:
• P (I) is the probability of activating an independent fault in one of the variants
• P (ID) is the probability of activating an independent fault in the decider
• P (nV) is the probability of activating a related fault among n of the variants
• P (RVD) is the probability of activating a related fault among the variants and the

decider
• _H is the failure rate of a hardware component
• _S is the total failure rate of the fault tolerant software (assuming the application’s

execution rate is _ this is equivalent to P (S) * _)
• _S, U is the undetected failure rate of the fault tolerant software (assuming the

application’s execution rate is _ this is equivalent to P (S, U) * _)
• c is the hardware coverage factor of the recovery blocks architecture

There were also some additional properties of the fault-tolerant architectures, shown in
Table 4, which may influence the decision between them.

Additional properties Fault-tolerance after a
previous fault (and
components disabled)

Method

Hardware Software Hardware
fault

Software fault

RB/1/1 Low error latency None Detection
provided by
local
diagnosis

Tolerance of
one
independent
fault

NVP/1/1 Detection of two or three
faults

Detection of two or three
independent faults

Detection Detection of
independent
faults

NSCP/1/1 Tolerance of two hardware
faults in the same self-
checking component.
Detection of two, three or
four faults

Tolerance of two independent
faults in the same self-
checking component.
Detection of two, three or four
independent faults.

Detection Detection of
independent
faults

Table 4: Additional properties metadata of fault-tolerant architectures

It was attempted to find actual data values to put into the formulae to calculate the
reliability of the fault-tolerant architectures. However, acquiring such data proved to be
very difficult and only some data values could be determined from previous work. Such

54

values are taken from Knight and Leveson’s evaluation of N-Version Programming
[Knight et al., 1986]. The remaining parameters were either derived from these, or
suitable values were introduced (as this scenario simply aims to illustrate the decision
making process it was thought that not too much time should be spent trying to get real
data).

Using these values the following results were obtained for the reliability of the fault-
tolerant architectures:

• RB: R(60) = 0.984
• NVP: R(60) = 0.970
• NSCP: R(60) = 0.961

The cost of the fault-tolerant architectures can be taken from the tables of metadata
shown in Tables 1-3:

• RB: 1.33 to 2.17 (average of 1.75) CFT/ CNFT, plus 1 additional hardware
component

• NVP: 1.78 to 2.71 (average of 2.25) CFT/ CNFT, plus 2 additional hardware
components

• NSCP: 2.24 to 3.77 (average of 3.01) CFT/ CNFT, plus 3 additional hardware
components

This showed that RB is the most reliable and also the cheapest to implement. However,
if other metadata, such as the run-time overheads when errors occur, is also taken into
account NVP or NSCP may be preferable.

55

Appendix B: Completeness of First Edition Mechanism Descriptions
This appendix provides an indication of the depth of each mechanism description in the RKB by stating, for each question, whether it
has been completed (Y) or not (N) or is not applicable to the mechanism (N/A). The mechanisms are referred to by the section
number in which they are described above, a reminder of which section refers to which mechanism is given below:

• 2.1 Cooperative Backup
• 2.2 Consensus Mechanisms

o Mech refers to the top-level description of a consensus mechanism
o BFT refers to Practical Byzantine Fault Tolerance
o SOF refers to Signal-On-Fail based consensus protocol
o Sintra refers to Secure Intrusion-Tolerant Replication Architecture

• 2.3 ModelWorks
• 2.4 Robust Re-Encryption Mixes
• 2.5 Dynamic Function Allocation
• 2.6 Supervisory Systems
• 2.7 Autonomic Computing Architecture
• 2.8 Robustness Testing
• 2.9 Model-based Stochastic Dependability Evaluation Tool
• 2.10 N-Version Programming/1/1
• 2.11 Recovery Blocks/1/1
• 2.12 N-Self-Checking Programming/1/1

0Question 2.1
Mech BFT SOF Sintra

2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12

Mechanism Name Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Submitted By Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Author of Mechanism Y Y Y Y Y Y Y N Y Y Y Y Y Y Y
Associated Projects Y N N N Y Y N N Y Y N Y N N N
Mechanism Objectives Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Detailed Description N/A Y Y Y Y Y Y Y Y Y Y N/A Y Y Y
Detailed Description Publication Y Y Y Y Y N/A Y Y Y Y Y Y Y Y Y

56

Related Working Groups (original) Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Related Working Groups (new) Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Relation to Assessability N/A N/A N/A N/A N/A Y Y Y Y N/A Y Y Y Y Y
Relation to Diversity Y Y Y Y Y N/A N/A Y N/A N/A Y N/A Y Y Y
Relation to Evolvability N/A N/A N/A N/A N/A N/A N/A Y Y Y N/A N/A Y Y Y
Relation to Usability N/A N/A N/A N/A N/A N/A N/A Y N/A N/A N/A N/A N/A N/A N/A
Categorisation Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Application Domains Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Related Concepts Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Main Components Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Mechanism Variants N Y N N N N/A N Y Y Y Y Y Y Y Y
Related Resilience Mechanisms N Y Y Y Y Y Y N Y Y Y N Y Y Y
Application Technologies Y Y Y Y Y Y N Y Y Y Y Y Y Y Y
Knowledge Requirements N Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Infrastructure Requirements Y N N Y Y Y Y N Y Y Y Y N N N
Other Prerequisites N Y Y Y Y Y Y N N N Y Y Y Y Y
Failure Modes N N N N N Y Y Y Y Y Y Y Y Y Y
Threats Addressed Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Resilience Metadata Y N N N N Y Y Y N Y Y Y Y Y Y
Formal description N Y N N N N Y N N N Y Y Y Y Y
Ontology N N N N N Y N N N N N Y Y Y Y
Diagrams N N N N N N Y N N N Y N Y Y Y
Examples N N N N N N Y N N N Y Y Y Y Y
FAQ N N N N N N N N N N N N N Y N
Other Related Publications Y Y N N Y Y Y Y N Y Y N Y Y Y
Research Interests Y Y Y Y Y Y Y N Y Y Y Y Y Y Y

Table 5: Indication of the completeness of the first edition mechanism descriptions

57

Appendix C: Competency Questions

This appendix provides the competency questions derived for the Res-Ex ontology:
1) What information exists about research area / mechanism x?
2) What mechanisms exist for research area x?

a) What is the competition?
b) What mechanisms exist that could help with my research?

3) What literature is there about research area / mechanism x?
4) Who’s working in research area / on mechanism x?
5) Who’s interested in research area / on mechanism x?
6) Who might be interested in a mechanism on x?
7) What benefit (to resilience) does mechanism x provide?

a) What does x do for availability / … ?
8) What are the gaps (potential areas for new mechanisms) in research area x?
9) What are the frequently asked questions about a research area or mechanism and the

corresponding answers?
10) What project(s) relate(s) to mechanism x?
11) What are the prerequisites for using mechanism x?

a) What are the environment assumptions?
b) What prior knowledge is required?

12) What genres of mechanisms exist?
a) What genre does mechanism x belong to?
b) What does this tell me?

