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Pointers to tutorial material
• With the aim of disseminating resilience and intrusion 

tolerance concepts and techniques to a wide audience, the 
following documents are available from the University of 
Lisboa web site.

• http://www.navigators.di.fc.ul.pt/it/index.htm

• Intrusion-Tolerant Architectures: Concepts and Design (Extended version).
Veríssimo, P. E., and Neves, N. F., and Correia, M. P. In: Architecting Dependable 
Systems. Springer-Verlag LNCS 2677 (2003). Technical Report DI/FCUL TR03-5, 
Dept. of Informatics, University of Lisboa (2003). abstract – pdf

• Intrusion-tolerant middleware: The road to automatic security. P. Verissimo, N. F. 
Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud, and I.Welch. IEEE 
Security & Privacy, 4(4):54-62, Jul./Aug. 2006.

• Intrusion-Resilient Middleware Design and Validation. P. Verissimo, M. Correia, N. 
Neves, P. Sousa. “Annals of Emerging Research in Information Assurance, Security 
and Privacy Services”. Elsevier 2008 (to appear).
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Why do systems need resilience?

• a non-canonical definition of resilience:
– “Ability to recover from or adjust easily to misfortune or 

change.”
• the case for resilience:

1. we want systems to operate through faults and attacks in a 
seamless manner, in an automatic way

• intrusion tolerance lets us achieve that
2. operating conditions and environments are everyday more 

uncertain and/or hostile
3. we want to deploy systems in unattended manner

• intrusion tolerance insufficient
4. we need extra predicates
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Designing for resilience

• Architecting intrusion-tolerant systems
– usual InTol systems live off some middleware layers that mask 

failures below, used by upper layers transparently of how 
tolerance is achieved

– middleware is generally composed of n replicas cooperating 
through distributed protocols

• Tolerating Intrusions
– replicas are attacked and corrupted at the measure of the 

power of threats (attacks, accidents)
– as long as there are sufficient replicas to perform the service 

correctly, the system continues to function
– … sometimes even without the user noticing anything
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Designing for resilience

• Handling Attack Severity 
– expected threats are severe (e.g., malicious intelligence), so 

protocols should resist to arbitrary faults (i.e., Byzantine)
– necessary quorum for Byzantine resilience to faults is typically

n = 3f +1 replicas
– for InTol middleware, the goal is to always preserve the 

number of replicas above the minimum threshold mentioned 
above
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Designing for resilience

• Resisting Attacks
– faults and attacks erode systems inexorably so an unattended 

(automatic) system faces inevitable resource exhaustion which 
leads to inevitable failure

– threats are so intense that this is not an academic possibility:
they are exacerbated by attacker power and common-mode 
vulnerabilities

– additional defences are often required to shrink attackers’
chances and slow down the rate of failures in order to prevent 
resource exhaustion: diversity, obfuscation, hybridization, 
trusted-trustworthy components, rejuvenation
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Designing for resilience

• Validating attacks
– necessary to study and understand malicious faults in order to 

validate the fault assumptions underlying the above-mentioned 
intrusion-tolerant algorithms

– for InTol middleware, this would allow algorithm and system 
designers to introduce more realistic assumptions

– we are still far from a thorough understanding of the 
mechanisms behind the trilogy attack-vulnerability-intrusion
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Further Reading
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Further Reading
• E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, M. Herrb, Lessons learned from the 

deployment of a high-interaction honeypot, Proceedings of the 6th European Dependable 
Computing Conference, October 2006, Coimbra, Portugal , pp 39-46

• L. Alvisi, D. Malkhi, E. Pierce, M. K. Reiter, and R. N. Wright, Dynamic Byzantine 
quorum systems," in Proc. Int’l Conference on Dependable Sys and Networks (FTCS-
30/DCCA-8), pp. 283-292, 2000.

• Y. Amir et al. Secure group communication in asynchronous networks with failures: 
Integration and experiments. In Proc. The 20th IEEE International Conference on 
Distributed Computing Systems (ICDCS 2000), pages 330-343, Taipei, Taiwan, April 
2000.

• Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru, J. Olsen, and D. 
Zage. Scaling Byzantine fault-tolerant replication towide area networks. In Proceedings 
of the International Conference on Dependable Systems and Networks, pages 105–114, 
June 2006.

• G. Ateniese, M. Steiner, G. Tsudik: Authenticated group key agreement and friends. In 
Proceedings of the 5th ACM Conference on Computer and Communications Security (CCS-
98), pages 17-26, New York, November 3-5 1998. ACM Press.
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services and key agreement protocols. IEEE Journal of Selected Areas on 
Communications, 18, March   2000.

• A. N. Bessani, M. Correia, J. S. Fraga, and L. C. Lung. Decoupled quorum-based 
Byzantine-resilient coordination in open distributed systems. In Proceedings of the 6th 
IEEE International Symposium on Network Computing and Applications, pages 231–238, 
July 2007.

• Christian Cachin. Distributing Trust on the Internet. In Procs. of the Int’l Conf. on 
Depend. Systems and Networks (DSN-2002), Gotteborg, Sweden, 2001.

• C. Cachin, K. Kursawe and V. Shoup, “Random oracles in Constantinople: Practical 
asynchronous Byzantine agreement using cryptography”, in Proc. 19th ACM Symposium on 
Principles of Distributed Computing (PODC), pp.123-32, 2000b.
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• Durward McDonell, Brian Niebuhr, Brian Matt, David L. Sames, Gregg Tally, Szu-Chien
Wang, Brent Whitmore. Developing a Heterogeneous Intrusion Tolerant CORBA System. 
In Procs. of the Int’l Conf. on Dependable Systems and Networks (DSN-2002), 
Washigton, USA, 2002.

• Bruno Dutertre, Hassen Saïdi and Victoria Stavridou. Intrusion-Tolerant Group 
Management in Enclaves. In Procs. of the Int’l Conf. on Dependable Systems and 
Networks (DSN-2001), Gotteborg, Sweden, 2001.

• J. Fraga and D. Powell, “A Fault and Intrusion-Tolerant File System”, in IFIP 3rd Int. 
Conf. on Computer Security, (J. B. Grimson and H.-J. Kugler, Eds.), (Dublin, Ireland), 
Computer Security, pp.203-18, Elsevier Science Publishers B.V. (North-Holland), 1985.

• M. Kaâniche, E. Alata, V. Nicomette, Y. Deswarte, M. Dacier, Empirical analysis and 
statistical modeling of attack processes based on honeypots, WEEDS 2006 - Workshop 
on empirical evaluation of dependability and security, June 25 - 28, 2006, 
Philadelphia,USA

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.12

Further Reading
• R. Guerraoui, M. Hurn, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper, 

Consensus in asynchronous distributed systems: A concise guided tour," in Advances in 
Distributed Systems (S. Krakowiak and S. Shrivastava, eds.), vol. 1752 of LNCS, pp. 
33-47, Springer, 2000.

• R. Guerraoui and M. Vukolic. Refined quorum systems. In Proceedings of the 1st 
Workshop on Recent Advances on Intrusion-Tolerant Systems, pages 8–12, 2007.

• V. Gupta and V. Lam and H. Ramasamy and W. Sanders and S. Singh, Dependability and 
Performance Evaluation of Intrusion-Tolerant Server Architectures, Proceedings of the 
First Latin-American Symposium, 2003

• V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems," in 
Distributed Systems (S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley, 
1993. An expanded version as Technical Report TR94-1425, Department of Computer 
Science, Cornell University, Ithaca NY, 1994.

• HariGovind V Ramasamy, Prashant Pandey, James Lyons, Michel Cukier, William H. 
Sanders. Quantifying the Cost of Providing Intrusion Tolerance in Group Communication 
Systems, In Procs. of the Int’l Conf. on Dependable Systems and Networks (DSN-
2002), Washigton, USA, 2002. 

• Matti A. Hiltunen, Richard D. Schlichting and Carlos A. Ugarte. Enhancing Survivability 
of Security Services Using Redundancy. In Procs. of the Int’l Conf. on Dependable 
Systems and Networks (DSN-2002), Gotteborg, Sweden, 2001.

• K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, The SecureRing protocolsfor
securing group communication," in Proc. 31st Hawaii Int’l Conf. on System Sciences, pp. 
317-326, IEEE, Jan. 1998.

• J. H. Lala, “A Byzantine Resilient Fault-Tolerant Computer for Nuclear Power Plant 
Applications”, in 16th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-16), (Vienna, 
Austria), pp.338-43, IEEE Computer Society Press, 1986.

• B. Liskov and R. Rodrigues. Tolerating Byzantine faulty clients in a quorum system. In 
Proceedings of the 26th Int’l Conference on Distributed Computing Systems, June 2006.

• B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, K. Trivedi. Modeling and 
Quantification of Security Attributes of Software Systems. In Procs. of the Int’l Conf. 
on Dep. Syst. and Networks (DSN-2002), Washigton, USA, 2002.

46



Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.13

Further Reading
• D. Malkhi and M. K. Reiter, An architecture for survivable coordination in large 

distributed systems," IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 
2, pp. 187-202, 2000.

• D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–
213, 1998.

• Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin. Small Byzantine Quorums. Procs. of 
Int’l Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.

• J. P. Martin and L. Alvisi. Fast Byzantine consensus. IEEE Transactions on Dependable 
and Secure Computing, 3(3):202–215, 2006.

• Roy A. Maxion and Tahlia N. Townsen, Masquerade Detection Using Truncated Command 
Lines. In Procs. of the Int’l Conf. on Dep. Syst. and Networks (DSN-2002), 
Washington, USA, 2002.

• F. Meyer and D. Pradhan, “Consensus with Dual Failure Modes,” presented at The 17th 
Int’l Symp. on Fault-Tolerant Computing Systems, Pittsburgh, PA, 1987, pp. 214--22.

• L. E. Moser, P. M. Melliar-Smith, and N. Narasimhan. The SecureGroup communication 
system. Procs of IEEE Information Survivability Confer., pages 507–516, January 2000.

• Peter G. Neumann, “Practical Architectures for Survivable Systems and Networks,”
Computer Science Laboratory, SRI International, Menlo Park, CA, Technical Report 
http://www.csl.sri.com/~neumann/private/arldraft.{pdf|ps}, October 1998.

• Nuno Ferreira Neves, João Antunes, Miguel Correia, Paulo Veríssimo, Rui Neves, Using
Attack Injection to Discover New Vulnerabilities, Proceedings of the Int’l Conference on
Dependable Systems and Networks (DSN), Philadelphia, USA, pp. 457-466, June 2006

• N.F. Neves, M. Correia, P. Veríssimo, Solving Vector Consensus with a Wormhole. IEEE 
Trans. Parallel and Distr. Systems, vol. 16, no. 12, pp. 1120-1131, Dec. 2005.

• S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, An Experimental Evaluation to Determine 
if Port Scans are Precursors to an Attack, in Proc. Int’l Conf. on Dependable Systems 
and Networks (DSN-2005), Yokohama, Japan, June 28-July 1, 2005, pp. 602-611

• P. Pal, F. Webber, and R. Schantz. The DPASA survivable JBI–a high-water mark in 
intrusion-tolerant systems. In Proceedings of the 1st Workshop on Recent Advances on 
Intrusion-Tolerant Systems, pages 33–37, 2007.

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.14

Further Reading
• P. Porras, D. Schnackenberg, S. Staniford-Chen and M. Stillman, “The Common 

Intrusion Detection Framework Architecture”, CIDF working group, 
http://www.gidos.org/drafts/architecture.txt, (accessed: 5 September, 2001).

• D. Powell, G. Bonn, D. Seaton, P. Veríssimo and F. Waeselynck, “The Delta-4 Approach 
to Dependability in Open Distributed Computing Systems”, in 18th IEEE Int. Symp. on 
Fault-Tolerant Computing Systems (FTCS-18), (Tokyo, Japan), pp.246-51, IEEE 
Computer Society Press, 1988.

• D. Ramsbrock, R. Berthier, M. Cukier, Profiling Attacker Behavior Following SSH 
Compromises, Proceedings of the 37th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks, pages: 119-124, 2007

• M. Reiter: Distributing trust with the Rampart toolkit; Comm’s of the ACM,39/4, 1996.
• F. B. Schneider, “Implementing fault-tolerant services using the state machine 

approach: a tutorial”, ACM Computing Surveys, 22 (4), pp.299-319, 1990.
• Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo, How Resilient are Distributed f 

Fault/Intrusion-Tolerant Systems?. In Proc’s of the Int’l Conference on Dependable 
Systems and Networks (DSN'05). Yokohama, Japan, pages 98-107, June 2005.

• P. Verissimo, A. Casimiro and C. Fetzer, “The Timely Computing Base: Timely Actions in 
the Presence of Uncertain Timeliness”, in Proc. of DSN 2000, the Int. Conf. on 
Dependable Systems and Networks, pp.533-52, IEEE/IFIP, 2000.

• Paulo Veríssimo, Nuno~Ferreira Neves, and Miguel Correia.  The middleware architecture 
of MAFTIA: A blueprint.  In Proceedings of the IEEE Third Information Survivability 
Workshop (ISW-2000), Boston, Massachusetts, USA, October 2000.

• Paulo Veríssimo, Travelling through Wormholes: a new look at Distributed Systems 
Models, SIGACTN: SIGACT News (ACM Special Interest Group on Automata and 
Computability Theory), vol. 37, no. 1, (Whole Number 138), 2006.

• P. Veríssimo, Uncertainty and Predictability: Can they be reconciled?, Future Directions 
in Distributed Computing, pp. 108-113,Springer Verlag LNCS 2584, May, 2003

• Chenxi Wang, Jack Davidson, Jonathan Hill and John Knight. Protection of Software-
Based Survivability Mechanisms. In Procs. of the Int’l Conf. on Dependable Systems and 
Networks (DSN-2002), Gotteborg, Sweden, 2001.

47



Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.15

Further Reading
• Birgit Pfitzmann and Michael Waidner.  Composition and integrity preservation of secure 

reactive systems.  7th ACM Conference on Computer and Communications Security, 
Athens, November 2000, ACM Press, New York 2000, 245-254.

• L. Zhou, F. B. Schneider, and R. van Renesse, COCA: A secure distributed online 
certification authority,Tech. Rep. 2000-1828, CS Dpt, Cornell University, Dec. 2000. 
Also ACM TOCS to appear.

• S. Bhatkar, R. Sekar and D. C. DuVarney. Efficient techniques for comprehensive 
protection from memory error exploits. In Procedings of the 14th USENIX Security 
Symposium, pages 271-286, Aug. 2005.

• R. R. Obelheiro, A. N. Bessani, L. C. Lung and M. Correia. How practical are intrusion-
tolerant distributed systems? DI/FCUL TR 06-15, Department of Informatics, 
University of Lisbon, Sep. 2006.

• P. Sousa, N. F. Neves and P. Verissimo. On the resilience of intrusion-tolerant 
distributed systems. DI/FCUL TR 06-14, Department of Informatics, University of 
Lisbon, Sep. 2006.

• P. Sousa, N. F. Neves and P. Verissimo. Resilient state machine replication. In 
Proceedings of the 11th Pacific Rim International Symposium on Dependable Computing 
(PRDC), pages 305-309, Dec. 2005.

• P. Sousa, N. F. Neves and P. Verissimo. Hidden problems of asynchronous proactive 
recovery. In 3rd Workshop on Hot Topics in Sys. Dependability (HotDep’07), June 2007.

• D. Wang, B. Madan, K. Trivedi, Security analysis of SITAR intrusion tolerance system, 
Proceedings of the 2003 ACM workshop on Survivable and self-regenerative systems, 
pages 23 – 32,  2003

• J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement 
from execution for Byzantine fault tolerant services. In Proceedings of the 19th ACM 
Symposium on Operating Systems Principles, pages 253–267, Oct. 2003.

• L. Zhou, F. B. Schneider and R. V. Renesse. APSS: proactive secret sharing in 
asynchronous systems. ACM Transactions on Information and System Security, 
8(3):259-286, 2005.

• P. Zielinski. Paxos at war. Technical Report UCAM-CL-TR-593, University of Cambridge 
Computer Laboratory, Cambridge, UK, June 2004.

• J.~Xu, A.~Romanovsky, and B.~Randell. Concurrent exception handling and resolution in 
distributed object systems.  IEEE Trans. on Parallel and Distributed Systems, 
10(11):1019--1032, 2000.

48



1.1

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

1
Introduction 

to
Intrusion Tolerance 

1.2

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Brief topics
on

security & dependability

49



1.3

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

The failure of computers
• Why do computers fail and what can we do about it? 

[ J. Gray]
• Because:

– All that works, fails
– We tend to overestimate our HW e SW--- that’s called faith☺

• So:
– We had better prevent (failures) than remedy

• Dependability is ...
– that property of a computer system such that reliance can 

justifiably be placed on the service it delivers
• Why? 

– Because (faith notwithstanding) it is the scientific way to 
quantify, predict, prevent, tolerate, the effect of
disturbances that affect the operation of the system
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Does not get better with distribution

• A distributed system is the one that prevents you from working 
because of the failure of a machine that you had never heard of.

[ L. Lamport]
• Since:

– Machines fail independently, for a start
– But they may influence each other,
– They communicate through unreliable networks, with 

unpredictable delays
• ...gathering machines renders the situation worse:

– The reliability (<1) of a system is the product of the individual 
component reliabilities, for independent component failures

– R(10 @ 0.99)= 0.9910= 0.90; R(10 @ 0.90)= 0.9010= 0.35

50



1.5

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Can get much worse with malicious failures

• Failures are no longer independent

• Failures become more severe

• Fault models become less representative
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sequence  fault→ error→ failure

design/
operation

faultDesigner/
Operator

interaction
fault

error failure
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fault
removal

Dependability measures

design/
operation

faultDesigner/
Operator

interaction
fault

error failure

fault 
tolerance

imperfect

error
processing

fault 
treatment

fault
prevention
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Interaction Fault classification

• Omissive
– Crash  

• host that  goes down
– Omission

• message that gets lost
– Timing 

• computation gets delayed

• Assertive
– Syntactic 

• sensor says air temperature is 
100º

– Semantic 
• sensor says air temperature is 

26º when it is 30º

semantic

syntactic

timing

omission

crash

OMISSIVE ASSERTIV
E

ARBITRARY
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Security Properties

• Confidentiality
– the measure in which a service or piece of information is 

protected from unauthorized disclosure
• Integrity

– the measure in which a service or piece of information is 
protected from illegitimate and/or undetected modification

• Authenticity
– the measure in which a service or piece of information is 

genuine, thus protected from personification or forgery (*)

• Availability
– the measure in which a service or piece of information is 

protected from denial of authorized provision or access

(*) also defined as a form of integrity of meta-information
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Dependability properties
• Reliability

– the measure of the continuous delivery of correct service (ex. 
MTTF)

• Maintainability
– the measure of the time to restoration of correct service (ex. 

MTTR)
• Availability

– measure of delivery of correct service with respect to 
alternation between correct and incorrect service (ex. 
MTBF/(MTBF+MTTR))

• Safety
– the degree to which a system, upon failing, does so in a non-

catastrophic manner
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Some philosophy for a start
• What characterizes a dependable system?

– A set of safety and liveness properties
• What characterizes a secure system?

– A set of safety and liveness properties
• What may impair a dependable system?

– A set of faults -> failure
• What may impair a secure system?

– A set of faults (attacks, vulnerabilities, intrusions) -> failure
• How do I make a system dependable (normally)?

– Using fault avoidance (prevention, removal) and fault tolerance (error 
detection, recovery, masking)

• How do I make a system secure (normally)?
– Using fault avoidance (attack prevention, vulnerability removal)

– and some bits of fault tolerance (intrusion detection)
– Nowadays, increasingly fault tolerance (intrusion detection, recovery, 

masking)
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Intrusion Tolerance 
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What is Intrusion Tolerance?

• The tolerance paradigm in security:
– Assumes that systems remain to a certain extent vulnerable
– Assumes that attacks on components or sub-systems can 

happen and some will be successful
– Ensures that the overall system nevertheless remains secure 

and operational, with a measurable probability
• In other words:

– Faults--- malicious and other--- occur
– They generate errors, i.e. component-level security 

compromises
– Error processing mechanisms make sure that security failure

is prevented
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Some preliminary observations...
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Did you say trusted?

• Sometimes components are tamper-proof, others 
tamper-resistant...
– Watch-maker syndrome: 

• --- “Is this watch waterproof?”
• --- “No, it’s water-resistant”
• --- “Anyway, I assume that I can swim with it!”
• --- “Well…yes, you can… but i wouldn't trust that very much"

• How can something trusted be not trustworthy?
– Unjustified reliance syndrome: 

• --- “I trust Alice”
• --- “Well Bob, you shouldn’t, she’s not trustworthy”

• What is the difference? If we separate specification
from implementation, and provide a notion of coverage, 
all becomes clearer
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Trust, Trustworthiness

• Trust
• the accepted dependence of a component, on a set of 

properties (functional and/or non-functional) of 
another component, subsystem or system
– a trusted component has a set of properties that are relied 

upon by another component (or components). 
– if A trusts B, then A accepts that a violation in those 

properties of B might compromise the correct operation of A
• Trustworthiness
• the measure in which a component, subsystem or 

system meets a set of properties (functional and/or 
non-functional)
– trustworthiness of B measures the coverage of the trust of A
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Trusted vs.Trustworthy

• Thou shalt not trust non-trustworthy components!
• B is Trustworthy in the measure of the coverage with 

which its assumed properties are met... and coverage is 
never 1 in real systems...

• B should be Trusted only to the extent of its 
trustworthiness
– trust may have several degrees, quantitatively or qualitatively
– related not only with security-relat. properties (e.g., timeliness) 
– trust and trustworthiness lead to complementary aspects of the 

design and verification process
• we should talk about trusted-trustworthy components
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Tamperproofness and its coverage
or “tamper-resistance” not needed

• Tamperproof
– Property of a system/component of being shielded, i.e. whose 

attack model is that attacks can only be made at the regular 
interface 

– Coverage of the "tamperproof" assumption may not be 
perfect, and there can be several degrees of such 
tamperproofness

• Example:
– Implementation of a security service using Java Cards to 

store private keys. We assume J.Cards are tamperproof, and 
so we argue that they are trustworthy (they will not reveal 
these keys to an unauthorised party). Hence we can justifiably 
argue that the service is trusted, with the coverage given by 
our assumptions, namely, the tamperproofness of JCards
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Intrusion Tolerance

terminology and concepts

Fault Models
Methodologies

Error processing
Fault treatment
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Attacks, Vulnerabilities, Intrusions
• Intrusion

– an externally induced, intentionally malicious, operational fault, 
causing an erroneous state in the system

an intrusion has two underlying causes:
• Vulnerability

– malicious or non-malicious weakness in a computing or comm’s
system that can be exploited with malicious intention

• Attack
– malicious intentional fault introduced in a computing or comm’s 

system, with the intent of exploiting a vulnerability in that 
system

interesting corolaries:
– without attacks, vulnerabilities are harmless
– without vulnerabilities, there cannot be successful attacks
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Attack-Vulnerability-Intrusion composite fault model

AVI sequence : attack + vulnerability→ intrusion → error → failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder

attack
(fault)

intrusion 
(fault)

error failure

Hence: attack + vulnerability → intrusion → error → failure
A specialization of the generic “fault,error,failure” sequence
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attack
(fault)

intrusion

error 

vulnerability
(fault)

failure

Cascading Faults through error propagation

ALLOWED

ALLOWED

NOT ALLOWED !

ALLOWED

ALLOWED

intrusion failureerror 

intrusion failureerror 
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Intrusion Tolerance

Fault Models
Methodologies

Error processing
Fault treatment
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Achieving trustworthiness w.r.t. malicious faults
(the classical ways...)

• Attack prevention
– Ensuring attacks do not take place against certain components

• Attack removal
– Taking measures to discontinue attacks that took place

• Vulnerability prevention
– Ensuring vulnerabilities do not develop in certain components

• Vulnerability removal
– Eliminating vulnerabilities in certain components (e.g. bugs) 

INTRUSION PREVENTION
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Examples
• Attack prevention

– selectively filtering access to internal parts of the system 
(e.g., if a component is behind a firewall and cannot be 
accessed from the Internet, attack from there is prevented)

– disabling JavaScript and/or Java prevents attacks by 
malicious scripts or applets

• Attack removal
– identifying source of an external attack and taking measures 

to terminate it
• Vulnerability prevention

– best practice in software development
– measures preventing configuration and operation faults

• Vulnerability removal
– of: coding faults allowing program stack overflow, files with 

root setuid in UNIX, naive passwords, unprotected TCP/IP 
ports
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AVI Composite fault model

¾sequence : attack + vulnerability→ intrusion→ failure

Intruder

attack
(fault)

intrusion 
(fault)

error failure

attack 
prevention

vulnerability
prevention

intrusion 
prevention

vulnerability
removal

Intruder/
Designer/
Operator

vulnerability
(fault)
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vulnerability
removal

AVI Composite fault model

¾sequence : attack + vulnerability→ intrusion→ failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder

attack
(fault)

intrusion 
(fault)

error failure

attack 
prevention

vulnerability
prevention

intrusion 
prevention

intrusion 
tolerance
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Intrusion Tolerance

Fault Models
Methodologies

Error processing
Fault treatment
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Error processing at work

• backward 
recovery

• forward 
recovery

• error masking

Redo after attack

“Plan B” after intrusion

Whatever happens...
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Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis
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ID: Error detection or fault diagnosis?

• classical IDS have two facets under intrusion tolerance
– detecting errors as per the security policy specification
– diagnosing faults as per the system fault model

• consider the following example:
– Organization A has an intranet with an extranet connected to 

the public Internet. It is fit with an IDS
– the IDS detects a port scan against an internal host, coming 

from the intranet
– the IDS detects a port scan against one of the extranet hosts, 

coming from the Internet
– what is the difference?
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Intrusion Forecasting

Attack injection
Vulnerability diagnosis
Assumption validation
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Approaches

• Fault injection
• Static vulnerability analyzers
• Run-time prevention mechanisms
• Vulnerability scanners
• Fuzzers
• Attack injection -Using Attacks to Find Vulnerabilities
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TARGET SYSTEM

vulnerability

Using Attacks to Find Vulnerabilities

failureerrorintrusion

attack

Look for errors / 
failures

(2)Generate various 
attacks

(1)

Find the correspondent 
vulnerability for that 
particular attack

(3)

• Composite fault model AVI (Attack, Vulnerability, and Intrusion)

65



1.49

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Attack Injection Tool

• Architecture

Attack Injector

Target Protocol Specification

Monitor

responseattack synchronization

execution
data

XML spec

Target 
System
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A biologically inspired 
metaphor of 

intrusion tolerance

Courtesy Christian Cachin, MAFTIA consortium
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Computer system under attack

• no flaws, no vulnerabilities
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Intrusion detection

• Sensors for different attacks

Sensor
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Computer system under attack

• with vulnerabilities and
• successful attack

Attack that exploits the vulnerability

Vulnerability
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Intrusion Tolerance

• with replicated and diverse structure
– replicas have different vulnerabilities
– majority remains intact

Attack that exploits the vulnerability

Vulnerability
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Intrusion Tolerance and Detection combined

• with replicated and diverse structure
• with detection sensors

Attack that exploits vulnerability

Vulnerability
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2
Resilience
Building

Paradigms
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Resilience building paradigms
• Intrusion Detection
• Byzantine Failure Detection
• Self-enforcing vs.Trusted Third Parties
• Threshold cryptography
• Secret sharing
• Byzantine Reliable Broadcast
• Byzantine agreement
• Byzantine Consensus and Atomic Broadcast
• Byzantine State Machine Replication
• Quorums
• Fragmentation
• Randomisation
• Indulgence
• Separate execution and agreement
• Wormholes
• Reactive/Proactive recovery
• Diversity and obfuscation
• Proactive resilience
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Resilience building paradigms

• Intrusion Detection

2.4
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Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis
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ID system classes

• Behavior-based (or anomaly detection) systems
– no knowledge of specific attacks
– provided with knowledge of normal behavior of monitored 

system, acquired e.g. through extensive training of the system 
– advantages: they do not require a database of attack 

signatures that needs to be kept up-to-date
– drawbacks: potential false alarms; no info on type of intrusion, 

just that something unusual happened
• Knowledge-based (or misuse detection) systems

– rely on a database of previously known attack signatures
– whenever an activity matches a signature, an alarm is 

generated
– advantage: alarms contain diagnostic information about cause
– drawback: potential omitted or missed alarms, e.g. new attacks
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Detection mechanisms

• consider system activity 
specified by patterns

• anomaly detection
– looks for deviation from 
NORMAL ACTIVITY PATTERNS

• misuse detection
– looks for existence of
ABNORMAL ACTIVITY PATTERNS

• we can have hybrids
• Quality of Service

– false alarm rate
– omitted alarm rate
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Resilience building paradigms

• Self-enforcing vs.Trusted Third Parties
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Self-enforcing protocols 

• Correct behaviour achieved by protocol participants alone
• They must build trust during protocol execution without trusting

each other initially, and some maybe being malicious (e.g., by 
voting, k-out-of-n)

Alice Bob
Self-Enforcing Protocol

A lice B ob
Self-Enforcing Protocol

Luisa

Paul
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Trusted-Third-Party protocols 
• Based on an apriori trusted 

component (TTP)
• TTP may be single point of failure
• adjudicated

– Acting a posteriori if necessary to 
recover from errors

• arbitrated
– Correct behaviour guaranteed 

during execution, errors prevented 
by arbiter

• certified
– Correct behaviour guaranteed 

prior to execution through 
credentials supplied which limit 
participants misbehaviour during 
execution (errors prevented)

Fault!

Adjudicated Protocol

Trent
(Adjudicator)

Alice Bob

Fault!

Trent
(Arbiter)

Alice Bob
Arbitrated Protocol

Alice Bob

Certified  Protocol

Trent
(Certif. Auth)
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Resilience building paradigms

• Threshold cryptography
• and secret sharing
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Threshold cryptography and secret sharing

• “Intrusion-tolerant” cryptography
• Given N processes each holding part of crypto secret

• Secret sharing: 
– Example a shared secret key
– Any k-out-of-N processes combine their shares and reconstruct 

secret s
– Any k-1 colluding or intruded processes cannot reconstruct s

• Function sharing: 
– Example a threshold signature
– k processes together execute function F
– k-1 colluding or intruded processes cannot execute F
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Proactive secret sharing

• A process cannot know whether its share is “good”
• If one share is corrupted the secret is not 

reconstructed

• Proactive secret sharing
– A period Tf is assumed as an estimate of time for f+1=k 

failures to be produced, e.g., to corrupt k processes
– (these k processes would be able to get the secret)
– Every Tss < Tf, protocol recalculates the shares 

(reconstructs) without changing the secret
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Resilience building paradigms

• Byzantine Reliable Broadcast/Multicast
• Byzantine agreement
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Basic failure modes

• Processes can fail in a Byzantine way:
– Crash, disobey the protocol, send contradictory messages, 

collude with other malicious processes,... 
• Network:

– Can corrupt packets (due to accidental faults)
– An attacker can modify, delete, and introduce messages in the 

network
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Reliable multicast

• A reliable multicast protocol is defined formally in terms of the 
following properties:

• Validity: If a correct process multicasts a message M then some 
correct process in group(M) eventually delivers M.

• Agreement: If a correct process delivers a message M then all correct 
processes in group(M) eventually deliver M.

• Integrity: For any message M, every correct process p delivers M at 
most once and only if p is in group(M), and if sender(M) is correct then 
M was previously multicast by sender(M).
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Resilience building paradigms

• Byzantine Consensus and Atomic Broadcast
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Consensus properties

• Validity 
– If all correct processes propose the same value v, then any 

correct process that decides, decides v
• Agreement 

– No two correct processes decide differently
• Termination 

– Every correct process eventually decide

• With Byzantine failures, Validity makes little sense
• Vector consensus improves the situation

• Consensus is equivalent to atomic broadcast
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Vector Consensus properties

• Validity
– Every correct process decides on a vector vect of size n such 

that:
– 1. For every 1 =< i  =< n, if process pi is correct, then vect[i] is 

either the initial value of pi or the value bottom
– 2. at least f+1 elements of the vector vect are the initial 

values of correct processes.
• Agreement 

– No two correct processes decide differently
• Termination 

– Every correct process eventually decide
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Atomic Broadcast properties

• Validity
– If a correct processor multicasts a message M, then some 

correct processor eventually delivers M.
• Agreement 

– If a correct processor delivers a message M, then all correct 
processors eventually deliver M.

• Integrity
– For any message M, every correct processor p delivers M at 

most once, and if sender(M) is correct then M was previously 
broadcast by sender(M).

• Total order 
– If two correct processors deliver two messages M1 and M2 

then both processors deliver the two messages in the same 
order.
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Resilience building paradigms

• Byzantine State Machine Replication
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Byzantine State Machine Replication

SERVERS (N)

CLIENTS

REQ REPLY

• Rules:
– they execute atomic 

commands, change state and 
produce outputs

– commands are deterministic
• If:

– servers start in same state
– execute same sequence of 

inputs in same order
• Then,

– all follow same sequence of 
state/outputs
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Byzantine State Machine Replication

• input requirements:
– commands delivered by Byzantine atomic broadcast protocol

• Failures of servers can be arbitrary
• given N number of servers, maximum number of servers 

that can fail is:
• or in other words: 

• this limit is actually imposed by the protocol used to 
disseminate messages (ABCAST)
– ex: N=4 servers tolerate f=1 corrupt; 

N=7 tolerates f=2
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Where do we go from here?

• arbitrary failures / asynchrony thread
– are safe, but normally inefficient
– FLP: no deterministic solution of hard problems e.g. consensus, 

BA, SMR with ABCAST
– does not solve timed problems (e.g., e-com, stocks)
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• OBJECTIVE: 
• solve most non-timed problems with high coverage 

• tone down determinism:
– randomization (Maftia/IBMZurich/Cachin-et-al) 
– semantics (+) - speed (-)

• tone down liveness expectations:
– sacrifice liveness guarantees (MIT/Castro-Liskov)
– termination (-) - speed (+)

• use weaker semantics
– avoid consensus (Cornell/APSS/Schneider-et-al) 
– use quorums (Alvisi, Malki, Reiter)
– semantics (-) - termination (+)

• Coverage:
– very high, but still bound to crucial assumptions, such as number of failures

• Timeliness:
– none

Arbitrary failure / asynchrony assumptions
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• OBJECTIVE: 
• solve non-timed problems with high coverage 

• tone down fault severity:
– hybrid faults (IBMZurich/Cachin-et-al) (Meyer, Pradhan, Walter, Suri)
– fault coverage (~) 

• enforce hybrid behaviour (“strong” and “weak” components):
– architectural hybridization (U.Lisboa)
– speed (+) - termination (+) - semantics (+)
– fault coverage (+) 

• Coverage:
– fair for hybrid fault coverage
– can get very high if bound to the “strong” components
– still bound to crucial assumptions, such as nr of failures

• Timeliness:
– none

Controlled failure assumptions
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Resilience building paradigms

• Randomisation
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Randomisation

• Another way to overcome the asynchronous impossibility 
of determinism is to use a probabilistic approach to 
solve consensus

• It does not require any explicit or implicit timing 
assumptions

• These algorithms usually have a large number of 
excepted communication steps and/or rely heavily on 
public-key cryptography 
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High-performance Randomisation

• These features have led to a couple of general (wrong) 
beliefs about randomisation inefficiency:
– too slow to be used in practice
– local coin tossing slower than shared coin tossing

• But...two important points have been overlooked:
– Consensus protocols are not executed in oblivion
– The theoretical adversary models is not very realistic

• With this in mind, high-performance solutions were 
recently found, bringing new practicality to randomised
consensus
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Resilience building paradigms

• Indulgence
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Indulgence

• Another way to overcome hardness of asynchronous 
non-determinism (FLP) is to:
– allow protocols not to have liveness (i.e., not to terminate)
– but guaranteeing that they always have safety

• This way, partial synchrony assumptions can be made in 
a safe way
– if attacked, all that happens is that protocol stalls but never 

makes mistakes
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Resilience building paradigms

• Separate execution and agreement
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Separate execution and agreement

AGREE/EXEC SERVERS

CLIENT CLIENT

EXEC SERVERS

AGREE SERVERS

Normal architecture Separation

2f+1 
service-executing
servers

3f+1 
agreement-broking
servers 
(agree on ordering)

[Yin et al.]

• Separate server sets allow to lower the number of required 
execution servers to 2f+1, maintaining 3f+1 for agreement
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Resilience building paradigms

• Quorums
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Quorums

• Another way to overcome limitations imposed by FLP in 
arbitrary failure modes

• a quorum system Q is a server set such that
• forall Q1, Q2 in Q, Q1 and Q2 always intersect
• operations are performed over a quorum
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Quorums vs SM

• SM – generic solution for data and/or operations/services
• Quorums – dedicated to data repositories

RME QUORUNS

SERVERS (N)

CLIENTS

REQ REPLY

QUORUM Qi

DATA REPOSITORY

SERVERS (N)

CLIENTS

REQ REPLY

GENERIC SERVICE
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Resilience building paradigms

• Fragmentation
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Quorums vs Fragmentation

• Quorums: 
– emphasis on small memory objects (variables, tuples)

• Fragmentation: 
– emphasis on large memory objects (files, archives)
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Fragmentation, Redundancy, Scattering – FRS

• Data endures three steps:
– fragmentation – data is fragmented, confidenctiality is not 

perfect, but fragments yield practically nothing of whole
– redundancy – fragments are replicated to tolerate losses
– scattering – fragments are disseminated throughout system 

repositories

[Fraga & Powell 85]

..

.

F R A G M E N T A T I O N        R E D U N D A N C Y            S C A T T E R I N G

S E R V E R S

A R Q U I V E          F R A G M E N T S
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Resilience building paradigms

• Wormholes
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Wormhole-aware
• Wormhole-aware server sets with a hybrid failure model allow to 

lower the number of required servers to 2f+1

TTCB   Wormhole control channel

TTCB
local

TTCB
local

TTCB
local

CLIENTS

AGREE/EXEC SERVERS (N)

WAN / LAN

WORMHOLE: 
limited functionality
but trustworthy subsystem

Service is executed in servers with 
occasional calls to TTCB
(agree on ordering)

[M. Correia, N. Neves,
P. Veríssimo], U. Lisboa

2f+1 
agree/exec servers
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Resilience building paradigms

• Exhaustion safety
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• OBJECTIVE: 
• keep systems working long enough

(non-timed problems, arbitrary failures / asynchrony thread)

• ensuring enough replicas
• using diversity and obfuscation

• OBJECTIVE: 
• keep systems working long enough or in a perpetual manner

• reactive or proactive recovery (e.g., rejuvenation, refreshing)

Taking long detours…
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Detours may lead to dead ends…

• f fault-tolerance means at least (n-f) correct 
nodes.

• Resource exhaustion: violation of a resource 
assumption (e.g., f+1 nodes fail), which may lead to failure

• An exhaustion-failure is a failure that results from 
resource exhaustion.

• A system is exhaustion-safe if resource exhaustion 
never happens.
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To Be or Not to Be Exhaustion-Safe

exhaustion-safe

non 
exhaustion-safe
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Resilience building paradigms

• Reactive/Proactive recovery
• Diversity and obfuscation
• Proactive resilience
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Async Proactive Recovery

• How to guarantee that rejuvenations always terminate 
before resource exhaustion?
– Rejuvenation start instant may be delayed.
– Rejuvenation actions may be delayed.
– These delays may be enforced by a malicious adversary!

• Async proactive recovery does not guarantee 
exhaustion-safety.
– namely, in a malicious environment.
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Problems of proactive recovery

• Problems that may affect proactively recovered 
intrusion-tolerant systems:
– 1. adversary may be more powerful than assumed
– 2. adversary may slow down the pace of recovery
– 3. adversary may perform stealth attacks on the system 

timing
– 4. recoveries may reduce system availability

• Classical proactive recovery systems are affected by 
all 4

• Proactive resilience deals with problems 2, 3 and 4. 
(Problem 1 is fundamentally unsolvable) [Sousa et al., 
SAC06] 
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Detours may lead to dead ends…

• An f fault-tolerant distributed system is exhaustion-
safe if it terminates before f+1 faults being produced

• Obvious?
• Impossibility of exhaustion-safe asynchronous 

distributed systems (w/ or w/o proactive recovery)
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Proactive resilience

• Combining proactive recovery and wormholes
– Proactive recovery is useful to postpone texhaust as long as it 

has timeliness guarantees.
– Proposal: combine async payload system with 

sync proactive recovery subsystem.

[Sousa, Verissimo, Neves]
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Limitations of 
some current

IntTol paradigms
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Limitations of IntTol paradigms

• Resource exhaustion unnoticed
or
• why attackers work in real time
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Alice Bob

Paul

Trent

Async

N

Classical Model - Async System
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Burn like a candle or....
Burn like a match?

Classical Model  vs.  Reality

Alice Bob

Paul

Trent

tphi

tint
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Proactive Recovery
• Goal: to constantly postpone texhaust through periodic rejuvenation.

– e.g., periodic rejuvenation of secret keys, OS code, etc .

t

tstart tend

rejuvenation
starts

rejuvenation
ends

texhaust texhaust

• A system is exhaustion-safe only if rejuvenations are always terminated 
before exhaustion.

Proactive 
recovery is 
triggered

Proactive 
recovery 
finishes
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Physical Model - Async system
with hidden sync assumptions
 

Alice Bob

Paul

Trent

FT Protocol

Async

tphi
Sync

tphi

NOT Exhaustion-safe!

NOT Exhaustion-safe!

Physical Model - shows Async system with unaccounted 
for synchrony assumptions
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Proactive Recovery
• Goal: to constantly postpone texhaust through periodic rejuvenation.

– e.g., periodic rejuvenation of OS code . 

tphi

tstart tend

rejuvenation
starts

rejuvenation
ends

texhaust texhaust

tinttphi!tint?

Proactive 
recovery is 
triggered

Proactive 
recovery 
finishes

Rejuvenation 
increases 
texhaust

Proactive recovery 
execution delayed 
e.g., due to some 

overload

Resources are 
exhausted … system 
correctness can be 

compromised
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The case for hybrid dis sys models

Alice Bob

Paul

Trent

FT Protocol

Async

Classical Model - Correct FT Async system

tphi

Exhaustion-safe!
Exhaustion-safe!

• in an asynchronous system, all synchrony must be 
encapsulated
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Limitations of IntTol paradigms

• Homogenous models and hidden assumptions
or
• why attackers pick the weakest link
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Alice Bob

Paul

Trent

Async

N

Classical Model - Async System
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Alice Bob

Paul

Trent

FT Protocol

Sync
Async

N

tint

Classical Model - Async System
with hidden sync assumptions

NOT OK!NOT OK!
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From Theory to Practice (1)
• System Model: 

– async model, malicious adversary.
– private key shared by servers using threshold cryptography. 
– Shares are periodically refreshed through an asynchronous proactive 

secret sharing protocol (APSS).
– Key is compromised if an adversary collects sufficient shares in the 

interval between successive executions of the APSS.
• Algorithmic assumptions:

– n servers share the private key using (n, f+1) secret sharing scheme
– f+1 shares are sufficient to recover the key.
– less than f+1 shares give no knowledge about the key.
– At most f≤(n-1)/3 servers “are compromised at any time”.

• Excludes the possibility of an adversary controlling f+1 servers simultaneously, 
• but “does not rule out learning f+1 shares one at a time” (mobile virus attack)
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The problem

• when safety of an asynchronous system depends on 
non-substantiated timing assumptions

• clocks with bounded rate of deviation to real-time
• capacity of performing periodic (timely) executions
• these assumptions can be violated either in the assumed async

environment and/or by a malicious adversary.
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From Theory to Practice (4)

• An attack that compromises safety:
– Two adversaries: ADV1 and ADV2.

– Step 1: ADV1 performs a mobile virus attack against f+1 
servers

• slows the clock rate of each server.

– Step 2: ADV1 temporally cuts off the links between the f+1 
servers and the rest of the system.
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From Theory to Practice (5)
• An attack that compromises safety:

– Step 3: ADV2 performs a mobile virus attack against the same 
f+1 servers

• learns, one by one, f+1 private key shares.
• no rejuvenation occurs in between because in step 1 clocks are made as slow as 

needed.

– Step 4: ADV2 discloses private key by combining the f+1 
shares.

– Important Note: ADV1 actions simply enforce a behavior that 
can occur in any fault-free async system.
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From Theory to Practice (6)

• Example with n=4, f=1

s01s01s01s01

A B C D

sXX: share version
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From Theory to Practice (6)

• Example with n=4, f=1

s05s05s05s05

A B C D

sXX: share version

ADV1 slows A 
clock
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From Theory to Practice (6)

• Example with n=4, f=1

s15s15s15s15

A B C D

sXX: share version

ADV1 slows B 
clock
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From Theory to Practice (6)

• Example with n=4, f=1

s25s25s25s25

A B C D

sXX: share version

ADV1 cuts off 
connection 

between A,B and 
C,D
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From Theory to Practice (6)

• Example with n=4, f=1

s50s50s25s25

A B C D

sXX: share version

ADV2 gets A 
share
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From Theory to Practice (6)

• Example with n=4, f=1

s70s70s25s25

A B C D

sXX: share version

ADV2 gets B 
share

A share + B share = 
private key
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From Theory to Practice (6)

• Example with n=4, f=1

s70s70s70s70

A B C D

sXX: share version

ADV2 
reconnects 
network
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The case for hybrid dis sys models

N>3f

Async

Classical Model - Correct FT Async system

Alice Bob

Paul

Trent

FT Protocol

All t factored out 
e.g. to FD oracles

Sync
tint

OK!OK!

• in an asynchronous system, all timing assumptions must 
be encapsulated
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Findings

• Current state-of-the-art with homogenous models 
does not allow to construct exhaustion-safe 
distributed systems, specially in face of 
arbitrary/malicious faults:

– Sync systems are vulnerable:
• timing failures.

– Async systems are vulnerable:
• max number of faults + unbounded execution time.

– Async systems with async proactive recovery are vulnerable:
• max number of faults + unbounded rejuvenation period.
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Proactive Resilience
Proactive Recovery in Wormhole (hybrid) models

– Using proactive recovery 
• define the number of faults between rejuvenations
• compute rejuvenation period
• execute recovery:

• timely triggered
• executed in bounded time

Host A
local
PRW

Host B
local
PRW

Host C
local
PRW

optional control network

synchronous
any synchrony (payload)

application-dependent synchrony

106



3.1

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

3
Models 

of
Resilient
Systems 

3.2

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance

strategies
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Failure assumptions in presence of intrusions
• Basic types of failure assumptions:

– Controlled failures : assume qualitative and quantitative 
restrictions on failures, hard to specify for malicious faults

– Arbitrary failures : unrestricted failures, limited only to the 
“possible” failures a component might exhibit, and the 
underlying model (e.g. synchronism)

• Fail-controlled vs. fail-arbitrary models in face of 
intrusions
– FC have a coverage problem, but are simple and efficient
– FA are normally inefficient, but safe

• What are malicious failures?
– There is an adversarial attitude and an intention to harm
– How do we model the mind and power of the attacker?
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Modelling malicious failures

• Failures are no longer independent
– Human attackers are the “common-mode” link
– Triggering simultaneous attacks
– Exploiting common vulnerabilities
– Performing collusion through distributed protocols

• Failures become more severe
– The worst possible behaviour: inconsistent output, at wrong

times, forged, etc.
– The greatest possible magnitude: patterns of occurrence no 

longer stochastic, only limited by attacker power
• Fault models become less representative

– Maliciously induced failures defy qualitative (modes) and 
quantitative (stochastics) models for fault distribution
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Asynchronous Fail-uncontrolled strategy

• Time-free
• Arbitrary failure environment
• Arbitrary failure protocols
• Used e.g. with: probabilistic Byzantine-agreement or consensus 

protocols
• Impossibility results for deterministic protocols, and for any timed 

operation

Ci

Host A

Cj

Host B

Ck

Host C

Cl

Host D

Arbitrary Failure Protocols
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Arbitrary failure assumptions

• operations of very high value and/or criticality: 
– financial transactions of very high value (contracts,credencials)
– critical control operations in infrastructures
– whenever failure due to assumptions violation can’t be incurred
– AND, lack of performance and functionality can be accepted

• coverage of assumptions:
– maximal, since little is assumed

• arbitrary-failure resilient building blocks
– e.g. Byzantine agreement and consensus protocols
– no assumptions on existence of fail-controlled components
– impossibility of deterministic behaviour
– time-free approach, impossibility of any timed operation
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Partially-synchronous Fail-controlled strategy

• Timed, partially synchronous
• Non-Arbitrary failure environment and protocols
• Used e.g. with: classical reliable multicast and atomic broadcast
• Problem of coverage of assumpions 
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Recapitulating
• If you want efficient/performant solutions to F/T

– assume controlled failure modes (omissive, fail-silent, etc.)
• If you want to build timely services (even soft R/T)

– assume synchronous models, or at least partially sync
• Some security-related systems take this approach

– partial synchronous environment
– well-behaved (e.g. fortress) hosts
– moderate level of threat in network

• They work, but only to the coverage of the assumptions
– which must be substantiated
– else we fall in the “well-behaved hacker” syndrome:

• ``Hello, I'll be your hacker today, here is the list of what I promise not to do.''
• ``Oh thank you! By the way, here are a few additional attacks we would also like 

you not to attempt.''

110



3.13

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Where do we go from here?

• arbitrary failures / asynchrony thread
– are safe, but normally inefficient
– FLP: no deterministic solution of hard problems (e.g. ABCAST, 

consensus, BA)
– does not solve timed problems (e.g., SCADA, CCC, e-com)

• controlled failures / synchrony thread
– hard to specify for malicious faults and that brings a coverage 

problem
– susceptible to attacks on timing assumptions
– difficulty of implementation of sync. even in benign settings
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• OBJECTIVE: 
• solve most non-timed problems with highest possible coverage 

• tone down determinism (e.g., randomisation)
• tone down liveness expectations (e.g., indulgence)
• use weaker semantics (e.g., thresholds, quorums)
• tone down allowed fault severity (e.g., hybrid faults)
• tone down asynchrony (e.g., parsync protocols, FDs)

• OBJECTIVE: 
• solve timed problems with highest possible coverage 

• tone down asynchrony (e.g., sync/parsync protocols)

Taking detours…
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Take time/synchrony facet

• OBSERVATION [Veríssimo and Casimiro. The Timely Computing Base model and 
architecture. DI/FCUL TR-99-2, IEEE TOCS 2002]:
synchronism is not an invariant property of systems

• degree of synchronism varies in the time dimension: 
– during the timeline of their execution, systems become faster 

or slower, actions have greater or smaller bounds
• it also varies with the part of the system being 

considered, that is, in the space dimension: 
– some components are more predictable and/or faster than 

others, actions performed in or amongst the former have 
better defined and/or smaller bounds
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Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et 
al, Castro et al, Zhou et al, Raynal et al, 
Macêdo et al, Aguilera et al, Friedman et 
al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete
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Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et 
al, Castro et al, Zhou et al, Raynal et al, 
Macêdo et al, Aguilera et al, Friedman et 
al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete

HOW DOES IT WORK UNDER 
HOMOGENEOUS MODELS?!
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Homogeneous distr. sys. models

Pt

Pv

Pu

Ps

Pr

Wb

WG

synchronous/secure asynchronous/insecure

?
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Homogeneous distr. sys. models

Pt

Pv

Pu

Ps

Pr

Wd

Wc

We

Wb
Wa

?

synchronous/secure asynchronous/insecure
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Advanced modelling concepts 

for IntTol systems
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Advanced models for IntTol systems

• Recursive building of trust and trustworthiness
– Trusted-trustworthy systems out of non-trustworthy

components
• System models of hybrid trustworthiness

– Trusted-trustworthy systems out of non-trustworthy AND 
trustworthy components 
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Advanced models for IntTol systems
• Intrusion-aware composite fault & intrusion models

– the competitive edge over the hacker
– AVI: attack-vulnerability-intrusion fault model

• Combined use of prevention and tolerance
– malicious failure universe reduction 
– attack prevention, vulnerability prevention, vulnerability 

removal, in system architecture subsets and/or functional 
domains subsets

• Architecturally hybrid failure assumptions
– different failure modes for distinct components
– reduce complexity and increase performance, maintaining 

coverage
• Quantifiable assumption coverage

– fault forecasting (on AVI)
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Recursive building of trust & trustworthiness
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Building trustworthiness

• Subsystem C designed to be trustworthy
– By construction

C1 C2

C3 C4 C5

C6

C1 C2

C3 C4 C5

C6

Trustworthy C
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Building trust

• Subsystem C designed to be trustworthy
– By construction

• Subsystem C becomes B ’s environment
– Properties of C are assumed by B

• B trusts C
– a trusted-trustworthy subsystem

C1 C2

C3 C4 C5

C6

C1 C2

C3 C4 C5

C6
B3

B5

B4

B2

B1

Trusted C (by B)
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On coverage and separation of concerns
• predicate P holds with a coverage Pr

– we say that we are confident that P has a probability Pr of 
holding

• environmental assumption coverage (Pre)
– set of assumptions (H) about the environment where system 

will run
– Pre = Pr (H | f) f- any fault

• operational assumption coverage (Pro)
– the assumptions about how the system/algorithm/mechanism 

proper (A) will run, under a given set of environmental 
assumptions

– Pro = Pr (A | H)

Alice
Bob

Luisa

PaulAlicePr(A ) = Pro x Pre = Pr (A | H) x Pr (H | f)
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System models of hybrid trustworthiness
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Intrusion tolerance with hybrid failure assumptions

• How to achieve coverage of controlled failure 
assumptions, given unpredictability of attacks and 
elusiveness of vulnerabilities?
– E.g. considering that not everything is intruded

• Hybrid failure assumptions:
– the presence and severity of vulnerabilities, attacks and 

intrusions varies
• Classic hybrid fault models [Meyer, Pradhan, et al]

– flat, use stochastic foundation to explain different behavior 
from a collection of components of same type (i.e. k crash and w
byzantine in vector of values)

• Useless or at least risky in malicious environments
– lack of substance: intentional player defrauds these 

assumptions
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Hybrid failure assumptions considered useful 

• Architectural hybridisation
– the presence and severity of vulnerabilities, attacks and 

intrusions varies from component to component, i.e., different 
assumptions for distinct component subsets, possibly different

– behaviour enforced by construction: trustworthiness
– fail-controlled components or subsystems with justified 

coverage (trustworthy), used in the construction of fault-
tolerant protocols under hybrid failure assumptions

• Using trusted-trustworthy components or subsystems:
– black boxes with benign behavior, omissive or weak fail-silent

type
– different capabilities (e.g. synchronous or not; local or 

distributed), can exist at different levels of abstraction
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Fail-controlled IntTol system models 
with Local Trusted Components

• Trustworthy subsystem (also called Wormhole) - e.g. smart or Java card; 
appliance board

• Secure, and time-free or timed (as in figure)
• Arbitrary failure environment + Local Wormhole
• Hybrid failure protocols
• Example usage: FT distributed data dissemination with authentication and 

authorisation protocols
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Fail-controlled IntTol system models 
with Distributed Trusted Components

• Distributed Trustworthy subsystem (distr. Wormhole) - e.g. appliance boards 
interconnected by dedicated network

• Secure, and time-free or timed (as in figure)
• Arbitrary failure environment + Distributed Wormhole
• Hybrid failure protocols
• Example: FT transac. prots requiring timing constraints (e.g. SCADA, DCS)
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Architecurally hybrid distributed systems models
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Architect.hybrid distr. sys. models

Pt

Pv

Pu

Ps

Pr

Payload 
System

Sp

Wd

Wc

We

Wb

Wa

WG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Any-synchrony/security system WAny-synchrony/security system P
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Wd

Wc

We

Wb

Wa

Wormhole
Subsystem

Sw

WG

WG

WG

WG

WG

Architect.hybrid distr. sys. models

Pt

Pv

Pu

Ps

Pr

Payload 
System

Sp

Any-synchrony/security system WAny-synchrony/security system P
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Shortcuts vs. detours

• Rendering the solution simpler
(without changing the problem!)

• Architectural hybridization
• Wormholes model

In 
Paulo Veríssimo, Travelling through Wormholes: a new look at Distributed Systems 
Models, SIGACTN: SIGACT News (ACM Special Interest Group on Automata and 
Computability Theory), vol. 37, no. 1, (Whole Number 138), 2006.
Paulo Veríssimo, Uncertainty and Predictability: Can they be reconciled?, Future 
Directions in Distributed Computing, pp. 108-113, Springer Verlag LNCS 2584, May, 
2003
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Wormholes

• New design philosophy for 
distributed systems: 

• constructs with privileged 
properties which endow systems 
with the capability of evading the 
uncertainty of the environment 
(``taking a shortcut'') for 
certain crucial steps of their 
operation, in order to achieve the 
required “hard properties”
(predictability)

Host A

Payload
System

Host C

Host B

Payload Network
(e.g. Internet/

Intranet)

WG - Wormhole GatewayHost D

Wormhole
subsystem

WG

WG

WG

WG

Host A

Payload
System

Host C

Host B

Payload Network
(e.g. Internet/

Intranet)

WG - Wormhole GatewayHost D

Local
Wormhole
subsystems

WG

WG

WG

WG
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Theoretical underpinnings

• A generic hybrid distributed systems model, or Wormholes Model
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P

P P

P

P

PP

Theoretical underpinnings

• Processes and links in Wormholes models
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Site C

Site A
Site B

Payload
Network

Theoretical underpinnings

• Architecture imprinting in Wormholes models

P

P P

P

P

PP

Control Network

Worm
Worm

Worm
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An example Wormhole:
Trusted Timely Computing Base (TTCB)

• Properties:
– trusted and timely execution; trusted timing failure detection
– secure (can only fail by crashing)
– real-time (capable of timely behavior)
– correct processes can interact securely with the TTCB

• TTCB can be seen as a distributed security kernel that provides a minimal set 
of trusted and timely services to assist the execution of fault/intrusion-
tolerant algorithms, such as :

– provides a trusted environment for crucial steps 
– local authentication
– agreement on a fixed sized block of data (TBA)
– globally meaningful timestamps

– Can be built (there is a COTS-based prototype)
Correia, Veríssimo, and Neves. The Design of a COTS Real-Time Distributed Security Kernel. 
European Dependable Computing Conf., EDCC-4, October 2002
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Wormholes model in action
Example of deployment of systems with wormholes
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Designing algorithms with wormholes
(aka hybrid distributed systems models)

Payload 
System

Sp

Pt

Pv

Pu

Ps

Pr

Wd

Wc

We

Wb

Wa

Postulate existence of 
components (W) on a different 

set of assumptions, e.g.:
- failure detector oracle
- set of fast(er) or synch. 
channels

Assume basic system P model, e.g. 
asynch. and Byzantine failures

Design your P algorithms and 
prove them correct

•Proof correct 
conditional to 
truthfulness of 
assumptions.
•What if assumptions 
cannot be 
substantiated? 
•I.e. they do not 
represent physical 
reality?

Any-synchrony/security system WAny-synchrony/security system P
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Designing algorithms with wormholes
(aka hybrid distributed systems models)

Design system W’s 
architect/algorithms to 

provide properties 
postulated earlier for 

these components, e.g.: 
- failure detector oracle
- set of fast(er) /synch. 

channels

- Reiterate design, now of system W
- Assume basic system W model, e.g.     

synch. and crash failure

Wd

Wc

We

Wb

Wa

Prove them correct

Assumptions substantiated 
by architectural hybridization

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole subsystem
Wormhole Gateway

Wormhole
Subsystem

Sw

•Proof correct conditional to 
truthfulness of assumptions.

“Main” or payload 
subsystem

Any-synchrony/security system WAny-synchrony/security system P
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Proof-of-concept systems with wormholes

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Wb

Any-synchrony/security system WAny-synchrony/security system P
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Proof-of-concept:
COTS-based TCB Reference Architecture

Linux
Application

Linux
Application

APITCB Specific Linux

TFD

System HW Resources
(Clock, Processor, Interrupts, etc.)

Fail-Silence Switch

Regular Networking Infrastructure

Regular
Linux OS

DUR
EXEC

RT-Linux

Fast-Ethernet Network

RT-Linux
task

TCB

Self-checking
Mechanisms

RT-Linux
Driver

Regular
Linux Driver

HW

implementedTPM
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Example Hardware-based Wormholes

• Connectivity:
– Wireless WiFI, Bluetooth
– Wired RS-232, USB2, Ethernet
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Proof-of-concept systems with wormholes 

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Wd

Wc

We

Wb

Wa

Any-synchrony/security system WAny-synchrony/security system P
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Proof-of-concept:
Distr. crash failure synch. wormhole

• TTCB is a distributed real-time and security kernel that provides a minimal 
set of trusted and timely services, such as
– failure detection
– local authentication
– agreement on a fixed sized block of data (TBA)
– trustworthy global timestamps and random numbers

PAYLOAD:
Arbitrary
failures &
Asynchronous WORMHOLE:

Crash
failures &

Synchronous
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Weaker wormholes

• Wormholes can be any distributed subsystem/component 
that follows different assumptions from “main” (payload) 
system:
– watchdog
– crypto chip
– sync or parSync set of channels
– timely execution monitor

• There can be more than one wormhole subsystem
• Wormhole subsystems can be constructed as fault or 

intrusion-tolerant subsystems
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Proof-of-concept systems with wormholes
Fault/Intrusion-tolerant wormholes

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Wd

Wc

We

Wb

Wa

B3

B5

B4

B2

B1

- Assume Byzantine failures in 
Wormhole realm- Close the “lid”, you now 

have a trustworthy Wormhole

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

Pr

Byzantine on failure system WAny-synchrony/security system P

- Use Byzantine resilient 
algorithms to implement 

Wormholes services
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Hybrid models/architectures more complex than 
homogenous, why use them?
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Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et 
al, Castro et al, Raynal et al, Aguilera et 
al, Friedman et al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete
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Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et 
al, Castro et al, Raynal et al, Aguilera et 
al, Friedman et al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete

- How to enforce perpetual, 
discrete ?
- How to get synchrony out of 
asynchrony?

SOLVED
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Review of

Strategies for construction

of IntTol subsystems
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Recursive use of F. Prevention and F.Tolerance

• The TTP protocol revisited
• Work at subsystem level to achieve justifiable behaviour
• Architectural hybridation w.r.t. failure assumptions

Alice Bob
Self-Enforcing Protocol

Luisa

PaulTTP
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Strategies for construction of IT subsystems

• Arbitrary model – no assumptions
• High coverage – very little to “cover”

Alice Bob
Self-Enforcing Protocol

Luisa

Paul
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Strategies for construction of IT subsystems

• Fail-controlled model -- unjustified environment 
assumptions

• Fair coverage – no enforcement

Alice
Bob

Luisa

PaulAlice
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Strategies for construction of IT subsystems

• Fail-controlled model – little environment assumptions; 
justified component assumptions

• High coverage – enforcement by Local Trusted Comp.

LSK

LSK

LSK

LSK
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Strategies for construction of IT subsystems

• Fail-controlled model – little environment assumptions; 
justified component assumptions

• High coverage – enforcement by Distr. Trusted Comp.

DSK

DSK

DSK

DSK

3.65

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Wormhole-Aware Byzantine Protocols
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Efficient Byzantine-Resilient Reliable Multicast on 
a Hybrid Fault Model

Efficient Byzantine-Resilient Reliable Multicast on a Hybrid Failure Model, Miguel Correia, Lau Cheuk Lung, Nuno
Ferreira Neves, Paulo Veríssimo. Proc’s of the 21st Symp. on Reliable Distributed Systems (SRDS'2002), Suita, 
Japan, October 2002
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Basic failure modes

• Processes can fail in a Byzantine way:
– Crash, disobey the protocol, send contradictory messages, 

collude with other malicious processes,... 
• Network:

– Can corrupt packets (due to accidental faults)
– An attacker can modify, delete, and introduce messages in the 

network

135



3.68

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

TTCB services

• The reliable multicast protocol uses only three TTCB 
services:

• Local authentication service
• Trusted block agreement
• Trusted absolute timestamping
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Agreement Service

• A process makes two operations: 
– propose, decide
– this works with “small” blocks of data

• agreement  is defined by (elist, tstart, decision)
– elist: list of processes involved
– tstart: instant when the TTCB stops accepting proposals
– decision = TTCB_TBA_RMULTICAST; returns:

• value proposed by 1st process in elist
• mask proposed-ok: processes that proposed the value decided
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First phase

• The protocol terminates in the first phase if there are 
no faults or delays

• The sender:
– sends a data message (DAT)
– give the recipients a reliable hash of the message sent using 

the TTCB Agreement Service
• The TTCB Agreement Service acknowledges the 

processes that proposed the right hash
– if all proposed the protocol terminates
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Example: best case (1st phase only)

P1

P4

P2

P3

TTCB agreement

tstart

propose

decide

DAT msg msg delivery

M

H(M)
H(M), all proposed ok

Od = k
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Second phase (II)

• Each process that has the message for which H(M) = 
value returned by the TTCB Agreement, resends M 
until:
– All processes acknowledged:

• Proposing on time for the TTCB Agreement; or
• With an ACK

– Or until it sent Od+1 times:
• Processes that do not receive are failed
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Example: malicious sender

P1

P4

P2

P3

TTCB TTCB agreement

tstart

propose

decide

DAT msg

ACK msg

msg delivery

M

M

M’

H(M) H(M’)

M

M

M’

H(M)

Od = 1
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Example: message losses/delays

P1

P4

P2

P3

TTCB

tstart

propose

decide

DAT msg

ACK msg

msg delivery

msg lost

H(M)
H(M)

Od+1 Od+1

Od = 1

TTCB agreement
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3. Protocol Performance
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Measurements

BRM

IPmcast

Typical values in earlier works: ~50ms
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Achievements

• Reliable multicast with Byzantine faults requires:
– asynchronous system: n ≥ 3f+1 [Bracha&Toueg]
– synchronous system: no limit (n ≥ f+2) [Lamport et al.]

• We follow a wormhole-aware model:
– payload is asynchronous and byzantine-on-failure
– TTCB is synchronous and crash-on-failure

• We achieve:
– n ≥ f+2 without asymmetric crypto (signatures)
– Efficiency: few phases, high performance
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State machine replication on atomic multicast

How to Tolerate Half Less One Byzantine Nodes in Practical Distributed Systems. Miguel Correia, 
Nuno Ferreira Neves, Paulo Veríssimo. In Proceedings of the 23rd IEEE Symposium on Reliable 
Distributed Systems. Florianopolis, Brasil, pages 174-183, October 2004.
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System architecture

Host 2Host 1

OS

s 1

OS

Host n

OS

s 2 s n

OS

c 1

OS

c m

(possibly many) CLIENTS

SERVERS

Local
TTCB

Local
TTCB

TTCB Control Channel

TTCB

Local
TTCB

Payload Network

OS

c1

OS

c1

OS

c1

OS

c1

OS

c1

OS

c1

Only servers have wormholes

3.82

Design for Resilience 

© 2002-08  Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Achievements

• First SMA service for practical byzantine distributed
systems with resilience f out of 2f+1
– Lower number of replicas reduces cost of hardware + cost of

designing different replicas (for fault independence)

• Low time complexity

• Good performance since it does not resort to public key 
cryptography
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