
18/10/2007 ReSIST workshop, Rome 18 Oct ‘07

Software Evolvability:
An industry’s view
2nd Open Workshop on Resilience in Computing 
Systems and Information Infrastructures

Author: Giuseppe Martufi
giuseppe.martufi@elsagdatamat.com

What is Evolvability

• Is the ability of a system to evolve addressing new needs

• In software engineering area evolvability is the property of a 
software to be easily updated to fulfill new requirements

• From industrial point of view a software that is more evolvable will
cost less to be maintained and adapted

• In fact software maintenance and evolution is the longest and most 
expensive phase of the software production lifecycle



Main topics involved in Evolvability

• Programming Models & Software Architectures:
– Programming Models (modularity, OO)
– Distributed Components Architecture (RMI, CORBA, DDS, 

Web-Services, SOA)

• Software Engineering:
– Development model
– Design patterns
– Modeling Languages (UML, SDL)

• Programming Languages (C++, Java, C#)

Programming Models & Evolvability

Machine level
Programming

(very poor evolvability)

Structured
Programming

(poor evolvability)

Procedural
Programming

(improved evolvability)

Modular 
Programming

(better evolvability)

Object-Oriented
Programming

(enhanced evolvability)

SOA
(strong evolvability)



Component based architectures & 
Evolvability

• A component-based application is evolvable if it is easily possible to 
exchange individual components without changing the others. 

• Component “distance” is increasing:

– a first stage all components were contained inside a file 
– in a second stage components have been spread out over a file 

system

– the third stage is based upon components distributed over the 
network

– in a fourth stage web-based service components are located in 
different administrated networks and domains, or the Internet 
(Web 2.0)

http://www.oasis-open.org/

http://www.omg.org/

New development models and Evolvability:
Open Source

• Open Source is a community model
• Software development is distributed among 

programmers that enrich a common product
• Each programmer reuses existing code and improve 

components/applications based on his own needs
• Frequent sw releases and nightly builds contribute to 

fast evolution of a product
• Example: GNU/Linux, Apache web server, tomcat, 

JBoss AS

http://www.opensource.org/http://www.gnu.org/



New development models and Evolvability:
Agile programming

• develop software in short amounts of time (iteration)
• iteration includes all the steps of a software project 

(planning, requirements analysis, design, coding, 
testing, and documentation)

• a single iteration could not generate a product having all 
requested functionality, but an intermediate release

• at each iteration software product can be adapted to the 
emergent state of the project

Plan

BuildRevise

http://www.agilealliance.org/

New development models and Evolvability:
Extreme Programming (XP)

• XP encourages starting with the simplest solution. Extra 
functionality can then be added later.

• It focuses on designing and coding for the needs of today instead of 
those of tomorrow

• XP can produce evolvable sw:
– a system made for today does not mean a system closed to the 

future

– possible future requirements might change before they become 
relevant

– an evolvable approach does not require to address today all 
future requirements, but to be easy adaptable to new 
requirements arising tomorrow

http://www.extremeprogramming.org/



Impact of sw Evolvability in Resilience
systems

• an evolvable software can be:
– easily adapted to new security requirements
– fast to react to new threat 
– clustered and virtualized

• open sources evolution leverage to the experiences of 
all communities and users

• fast-iteration model reduce the time-to-react of a sw
solution

• distributed component architecture spread services on 
the network increasing separation and reorganization

Industrial point of view

• Produce evolvable (adaptable) software allow to:

– reduce maintenance and adaptation costs

– improve the time-to-market
– easy introduce changes according to requirements 

• To produce evolvable products 

– modularity and component based approach are mandatory

– adopt standard approach, models, architecture and well know 
design patterns

– optimize documentation
• It does not exist the best formula for software engineering, the

better choice is the one supported by experience and needs



Industrial point of view:
evolvability best practices

• new requirements are inevitable

• minimize the effort and the time to adapt to changing requirements

• changes of sw needs discipline:
– compliance to standards (using widely accepted tools, models 

and processes)

– simplicity (by adopting well know practices in design and 
implementation)

– modularity (by using components)

– openness (by allowing the sw to be adaptable in next releases)

– clearness (provide documentation not only of the sw, but about 
its evolution too, face-to-face interactions)

Conclusions

• Evolvability is one of the key factors for reducing
software cost while empowering existing
applications/components

• Industry, which is ever looking for new way of 
reducing costs while increasing functionalities of 
offered components, is defining new business 
models that are based upon new generation 
components



Titolo - Arial bold 24 pt.

18/10/2007 ReSIST workshop, Rome 18 Oct ‘07

Thanks for 
your 

attention


